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Abstract. This paper investigates the state complexities of subword-closed and
superword-closed languages, comparing them to regular languages. We focus on
the square root operator and the substitution operator. We establish an exponential
lower bound for the n-th roots of superword-closed languages. For subword-closed
languages we analyze in detail a specific instance of the square root problem for
which a quadratic complexity is proven. For the substitution operator, we show
an exponential lower bound for the general substitution. In the case of singular
substitution, we show a quadratic upper bound when the languages are subword
closed and based on disjoint alphabets. We conjecture a quadratic upper bound in
the general case of singular substitution with subword-closed languages and prove
it in the case where the substitution applies on a directed language.
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Introduction

State complexity. The number of states of the canonical automaton recognizing a reg-
ular language L is known as its state complexity, denoted �(L). It is a common measure
of the complexity of regular languages. Finite state automaton are often used as data
structure: the size of the automata thus becomes an important parameter in the com-
plexity analysis of some algorithms.

For an operation or a function f on regular languages, the natural question is “how
does �(f (L)) relate to �(L)?” This leads to the definition of the state complexity of f as
the function�f ∶ ℕ → ℕ such that�f (n) is the maximum state complexity of f (L)with
L having state complexity at most n. This notion can be extended to functions having
multiple arguments, for example the state complexity of intersection would be given
by �∩(n1, n2). This area of automata theory already has a rich literature and the recent
survey [14] describes the known results for a wide range of operations and classes of
languages. As it can be difficult to find the exact complexity of some f (L) or to give a
uniform formula for the function�f , the goal is often to obtain bounds on the complexity
of f (L) and on �f . This induces a classification of the operations on regular languages
and finite automata based on the growth of �f .

State complexity of subregular classes. It is often interesting to measure the state
complexity of a function f when we restrict its argument to a subregular class. As some
applications only focus on a subclass of automata it becomes natural to study state com-
plexity on this restricted domain. For example, computational linguistics use automata
to encode lexicons that are always finite languages: they are considered in [12] while
their complement, cofinite languages, are considered in [4]. Linguistics are also inter-
ested in locally-testable languages [19], and other areas like genomics or databases or
pattern matching have their own subclasses of interest.

The study of state complexity restricted to such subclasses has recently become quite
active after Brzozowski et al. initiated a systematic study of state complexity on various
fundamental classes of subregular languages [11,6,9,10].

Subword-closed and superword-closed languages. In the context of computer-aided
verification, several algorithms for program verification use well-quasi-ordered data do-
mains [13,1,5] and in particular, using Higman’s lemma, words ordered by the subword,
or subsequence, ordering.1 These algorithms handle subword- and superword-closed
languages.

1 Here the terminology is not fixed. Some authors use “subword” for a factor, and use “scattered
subword” for what we call a subword (we follow [24]). Superword-closed languages are some-
times called “shuffle ideals” ([18]) and even “all-sided ideals” ([10]). In [15] “ideals” denote
the directed subword-closed languages, while superword-closed languages are called “filters”.
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The state complexity of subword- and superword-closed languages has not been
analyzed extensively.2 The main results are due to Brzozowski et al. who considered
subword-closed languages in [9] and superword-closed languages in [10]: these works
actually consider several subregular classes at once and only focus on the main opera-
tions: boolean combinations (with⊕ denoting the symmetric difference), concatenation,
iteration and mirror (denoted LR). However, there exist other interesting operations to
consider as they also preserve the subword/superword closedness such as the shuffle.

The following tables give the known bounds on the state complexity of a few oper-
ations.

State complexity for subword-closed languages
Operation Upper Bound Tightness requirement References
L ∩K mn − (m + n − 2) |Σ| ≥ 2 [9] Theorem 2
L ∪K mn |Σ| ≥ 4 [9] Theorem 2
L ⧵K mn − (n − 1) |Σ| ≥ 4 [9] Theorem 2
L⊕K mn |Σ| ≥ 2 [9] Theorem 2
L ⋅K m + n − 1 |Σ| ≥ 2 [9] Theorem 3

L∗ (and L+) 2 |Σ| ≥ 2 [9] Theorem 4
LR 2n−2 + 1 |Σ| ≥ 2n [9] Theorem 5
Lk k(n − 1) + 1 |Σ| ≥ 2 [20] Theorem 9

State complexity for superword-closed languages
Operation Upper Bound Tightness requirement References
L ∩K mn |Σ| ≥ 2 [10] Theorem 7
L ∪K mn − (m + n − 2) |Σ| ≥ 2 [7] Theorem 5
L ⧵K mn − (m − 1) |Σ| ≥ 2 [7] Theorem 5
L⊕K mn |Σ| ≥ 2 [10] Theorem 7
L ⋅K m + n − 1 |Σ| ≥ 1 [10] Theorem 9

L∗ (and L+) n + 1 |Σ| ≥ 2 [10] Theorem 10
LR 2n−2 + 1 |Σ| ≥ 2n − 4 [10] Theorem 11
Lk k(n − 1) + 1 |Σ| ≥ 1 our Proposition C.1

Our contribution. We are interested in completing the picture and consider the state
complexity of other operations on subword-closed or superword-closed languages.

In the following sections, we focus on two operators: the ntℎ-root operators and the
substitution operator. For the root operators, we show that they have exponential com-
plexity even when restricted to superword-closed languages. For the subword closed
languages, when L = ↓({w}) is the downward closure of a wordw it seems that there is
2 For these languages the most studied question is to obtain them by taking subword- or
superword-closure of arbitrary regular languages [18,16,17,23,21] and even of nonregular lan-
guages [3].
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a quadratic upper bound, we do not know if this extends to the general case of subword-
closed languages. For the substitution operatorLa←K , we show a quadratic upper bound
when L and K are subword-closed and based on disjoint alphabets and conjecture a
quadratic upper bound whenL andK are subword-closed. Finally we proved a quadratic
upper bound in the case where L is directed (without any hypothesis on the alphabets).

This work contributes to understanding the state complexities of subregular lan-
guages. It was done in the context of an initiation to research project at ENS Paris-
Saclay. I warmly thank Philippe Schnoebelen for his valuable help and dedication to the
project. I also thank Maelle Gautrin and Simon Corbard for initiating the research on
the substitution operator.

1 Preliminaries

In this work we assume that the reader is familiar with finite automaton and regular lan-
guages. We assume a finite alphabet Σ = {a, b,…}, use � to denote the empty word, and
write concatenation either u ⋅ v or uv. We write Σ(u) for the set of letters occurring in a
word u, and |u|a for the number of occurrences of letter a in u.

As we are going to work with subword closed languages that we call here downward
closed languages, we must define the notion of subwords.

Definition 1.1. Let x, y ∈ Σ∗, x is a subword of y, denoted x ≼ y, if and only if y can
be written as y = u1x1⋯ unxnun+1 for some factorization x = x1⋯ xn of x and. some
words u0,… , un, ui ∈ Σ∗.

Example 1.2. abba is a subword of accbebda.

Once we have the notion of subwords, we can take the subwords of a language L,
this is called the downward closure of L.

Definition 1.3. Let L ⊆ Σ∗, ↓(L) = {x ∈ Σ∗ | ∃ y ∈ L, x ≼ y} is the downward
closure of L. L is said downward closed if and only if ↓(L) = L.

Example 1.4. ↓(am) = {ai | 0 ≤ i ≤ m} and {�, a, b, ab} = ↓(ab) are downward closed.

There is a symmetric notion to downward closed languages. The idea is not to take
the subwords of words of L but to take the words such that the words of L are subwords
of them : superwords of L. This gives the upward closure of L.

Definition 1.5. Let L ⊆ Σ∗, ↑(L) = {x ∈ Σ∗ | ∃ y ∈ L, y ≼ x} denotes the upward
closure of L. L is said upward closed if and only if ↑(L) = L.

Example 1.6. With Σ = {a}, ↑(am) = ama∗ and ama∗ is upward closed.
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Remark 1.7. When taking the upward closure we need to specify the alphabet we are
using. This is seen in the equality ↑(L) = L⧢ Σ∗ linking superwords and shuffle.3 The
alphabet will always be clear from the context when we talk of upward closed languages
or upward closures.

Remark 1.8. The downward and upward closures verify the Kuratowski closure axioms
:

Let L,K ⊆ Σ∗

– ↓(∅) = ∅ and ↑(∅) = ∅.
– L ⊆ ↓(L) and L ⊆ ↑(L).
– ↓(↓(L)) = ↓(L) and ↑(↑(L)) = ↑(L).
– ↓(L ∪K) = ↓(L) ∪ ↓(K) and ↑(L ∪K) = ↑(L) ∪ ↑(K).

The reason why we present the downward closedness and the upward closedness as
dual notions comes from the following fact :

Fact 1.9 L is downward closed if and only if its complement L̄, i.e., Σ∗ ⧵ L, is upward
closed. Equivalently, L is upward closed if and only if L̄ is downward closed.

Another important fact is Haines Theorem: ifL ⊆ Σ∗ is downward closed or upward
closed then it is regular.

Let us now define the state complexity of a regular language.

Definition 1.10. Let L ⊆ Σ∗ be a regular language. We write sc(L) for the number of
states of the canonical automaton recognizing L and call it the state complexity of L.

Remark 1.11. Theminimal DFA is just the canonical DFAwith unproductive transitions
and states removed.

However, reasoning on automaton is not always the easiest way to write formal
proofs. For this we will often prefer using the formalism of left-quotients that we will
just call quotients. For a language L we let (L) denote the set of quotients of L and
we write �(L) for |(L)|, i.e., the number of different quotients of L.

Theorem 1.12 ([7]). For L a regular language, sc(L) = �(L).

Remark 1.13. Historically, this theorem was proven by Nerode and Myhill in 1957.
The notation (L) should be read as Σ(L) since the set of quotients depends on

the alphabet. Again we leave the alphabet implicit when there is no ambiguity.

Example 1.14. �({am}) = m + 2 as the quotients are {ai | 0 ≤ i ≤ m} and ∅.

Let us introduce the notion of state complexity through a less trivial example. For
this we prefer the notation L∕x (over x−1L) for a left quotient. This operation has a
counterpart in the derivatives of regular expressions, which we denote similarly with
e∕x.
3 We do not recall the definition of the shuffle, denoted L ⧢ L′, of languages. It can be found,
e.g., in [10] or [18].
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Lemma 1.15. For any word w, one has �(↓(w)) = |w| + 2.

Proof. We show that the quotients of ↓(w) are exactly the empty set and the ↓(v) for all
v that are suffix of w, thus �(↓(w)) = |w| + 2.

Let x ∈ Σ∗, if x is not a subword of w then ↓(w)∕x = ∅. If x ≼ w, let w1 be the
smallest prefix of w such that x ≼ w1 and write w = w1w2, then ↓(w)∕x = ↓(w2).
In fact, for any subword y of w2, xy ≼ w. And for y such that xy ≼ w, then we can
factorize w in w = w1w2 such that x ≼ w1 and y ≼ w2. ⊓⊔

To understand better how we compute quotients of downward closed languages we
introduce the following lemma. This is an essential property that will be often used when
studying the structure of quotients.

Lemma 1.16. Let L be a downward closed language and x, y two words with x ≼ y.
Then L∕y ⊆ L∕x.

Proof. Let w ∈ L∕y, then we get by definition yw ∈ L. However, as x ≼ y, we also
have xw ≼ yw. As L is downward closed, this implies xw ∈ L, hence w ∈ L∕x. ⊓⊔

Remark 1.17. ∅ is a quotient of L if and only if L ≠ Σ∗.

When it is too hard to exactly find the set of quotients, we can use dividing sets to
obtain lower bounds on the state complexity of the language.

Definition 1.18. Let L a language and  a set of words,  is a dividing set for L iff
∀ x ≠ y ∈  , L∕x ≠ L∕y.

Remark 1.19. By definition of a dividing set we have that if  is a dividing set ofL then
�(L) ≥ | |.

2 Root operators

In this section we will be working on the root operators, that are defined as the ntℎ-root
and the union of those roots. Formally:

Definition 2.1. Let L ⊂ Σ∗, and k ∈ ℕ>0, we let

k
√

L = {x | xk ∈ L} , ∗
√

L =
⋃

k∈ℕ>0

k
√

L .

When k = 2 we may just write
√

L.

As recalled in the introduction, the root operators preserve regularity and down-
ward/upward closedness. It is known that the state complexity of these operations are
exponential in the general case of regular languages [22]. We will prove exponential
lower bounds in the case of upward closed languages. For downward closed languages,
we will only focus on the square root and study the case of L = ↓(w) for w a word to
conjecture a quadratic upper bound.
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2.1 Upward closed languages

Let us first show that the root operator preserves upward closedness.

Proposition 2.2. Let L be a upward closed language, then k
√

L and ∗
√

L are upward
closed for k ∈ ℕ>0.

Proof. Let k ∈ ℕ, let x ≼ y ∈ k
√

L. Then xk ∈ L and xk ≼ yk. As L is upward closed,
yk ∈ L. Thus y ∈ k

√

L.
If x ≼ y ∈ ∗

√

L, then there exists k ∈ ℕ such that x ≼ y ∈ k
√

L and we conclude as
before. ⊓⊔

Let Σn be an alphabet having at least n distinct letters a1, ... , an. We denote by Vn
the n letter word of length n : Vn = a1⋯ an. For example, V4 = abcd.

Proposition 2.3. �( k
√

↑(Vn)) ≥ 2n when k ∈ ℕ>0 and �( ∗
√

↑(Vn)) ≥ 2n.

Proof. Let v,w be two subwords of Vn such that v ≠ w. Then there is a letter of Vn that
is either in v and not in w or in w and not in v. Without loss of generality, let us assume
the letter a is in v but not in w.

Then let x be Vn with a removed. Thus, for any k ≥ 1, Vn is a subword of (vx)k but
not of (wx)k. Thus, vx ∈ k

√

↑(Vn) but wx ∉ k
√

↑(Vn). Hence, k
√

↑(Vn)∕v ≠ k
√

↑(Vn)∕w
since one contains x but not the other. Finally, as there are 2n distinct subwords of Vn,
there has to be at least 2n distinct quotients in ( k

√

↑(Vn)).

Now for �( ∗
√

↑(Vn)), as wx ∉ k
√

↑(Vn) for all k ∈ ℕ>0,( ∗
√

↑(Vn)) contains at least
2n quotients. ⊓⊔

This shows a lower bound in 2n, however experimentally for the square root, we have
values close to 3n−1. In the appendix, we improve Proposition 2.3 and give in Proposi-
tion A.4 a lower bound in (2.41n). Furthermore, we give in Definition A.6 a direct
characterization of

√

↑(Vn) by describing its minimal elements (i.e. its generators).

2.2 Downward closed languages

Let us first show that the root operator preserves downward closedness.

Proposition 2.4. Let L be a downward closed language, then ∀k ∈ ℕ>0,
k
√

L and ∗
√

L
are downward closed.

Proof. Let k ∈ ℕ>0, let y ≼ x ∈ k
√

L. Then yk ≼ xk ∈ L. As L is downward closed,
yk ∈ L. Thus y ∈ k

√

L.

If y ≼ x ∈ ∗
√

L, then there exists k ∈ ℕ such that y ≼ x ∈ k
√

L and we conclude as
before. ⊓⊔
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Let Vn = a1a2⋯ an be like in Section 2.1 and define Wn = V 3n . For example
W2 = ababab. To understand better what could be the square root of a downward
closure, we study the example of

√

↓(Wn).

Recall that the conjugates of u are all the words of the form v′v for some factorization
vv′ of u. E.g., the conjugates of babar are {babar, abarb, barba, arbab, rbaba}.

Proposition 2.5. x ∈
√

↓(Wn) iff x is a subword of a conjugate of Vn.

Proof. Let us proceed by double implications,

Let us start with the easy case, let x be a subword of a conjugate v′v of Vn = vv′.
Then xx is a subword of v′vv′v which is a subword of vv′vv′vv′ = Wn. Thus x ∈
√

↓(Wn).

Now for the ⇐⇒ direction, let x ∈
√

↓(Wn), if x = � then it is a subword of any
conjugate. Otherwise, let us isolate the first letter of x = ay and factorize Vn = vav′
with no a occurring in v: we get xx = ayay ≼ vav′vav′vav′. There are two cases :
either the first x embeds in the vav′v prefix, or the second x embeds in the v′vav suffix.
In the 1st case x ≼ vav′v entails x ≼ av′v since v has no a and we are done since av′v
is a conjugate of Vn. In the second case x ≼ v′vav entails x ≼ av since v′v has no a and
we are done again. ⊓⊔

Proposition 2.6. �(
√

↓(Wn)) = n2 − n + 3.

Proof. Using Proposition 2.5, we have that x ∈
√

↓(Wn) iff x is a subword of a conju-
gate of Vn. Let us compute �(

√

↓(Wn)) by listing and counting its quotients.

Let us write L =
√

↓(Wn). First, if x = �, L∕x = L. If x contains two times the
letter a, then L∕x = ∅. And if x is a conjugate of Vn, L∕x = �.

There only remain the cases where x is a strict non-empty subword of a conjugate
of Vn. We claim that all these x yield different L∕x quotients. Let us write x = ai1 ...aim
with 1 ≤ m ≤ n. Let us denote by v[i, j] the factor of Vn starting by ai and finishing by
aj , 1 ≤ i ≤ j ≤ n. We get that the conjugates of Vn are of the form v[i, n]v[1, i − 1].
Thus, by Proposition 2.5 we have L =

∑

1≤i≤n ↓(v[i, n]v[1, i − 1]). Then we get that if
i1 < im < n,

L∕x =
⋃

1≤i≤n
↓(vni v

i−1
1 )∕(ai1 ...aim )

=
⋃

1≤i≤i1

↓(vnim+1v
i−1
1 )

= ↓(vnim+1v
i1−1
1 )

Furthermore, using the same equations, if 1 ≤ im ≤ i1 − 1, L∕x = ↓ vi1−1im+1
. Thus we get

a different quotient, different from L, {�} or ∅, for each pair (i1, im) ∈ {1, ..., n} × {i +
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1[n], ..., i + (n − 1)[n]} where x[n] denotes x mod n. Thus, we end up with n2 − n + 3
different quotients. ⊓⊔

We implemented an algorithm that given a language returns the minimal DFA of
the square root of its downward closure. In practice as it can be quite slow we used it on
words of length smaller than 12. Based on the results, it seems thatWn gives the largest
state complexity for words of length 3n. In the following, we try to understand this by
studying the largest state complexity of

√

↓(w) for w word of length n.

Definition 2.7. Let �(n) = max
|w|≤n �(

√

↓(w)).

Proposition 2.8. For all n ∈ ℕ we have

– �(n) ≤ �(n + 1),
– �(n) < �(n + 2).

Proof. For the first point, let w be a word reaching the maximum for n : �(
√

↓(w)) =
�(n). Let us consider wan+1,

√

↓(wan+1) =
√

↓(w). This comes from the fact that a
letter appearing once does not appear in the square root !

Thus �(
√

↓(w)) = �(
√

↓(wan+1)) ≤ �(n + 1).

For the second point, let w be a word reaching the maximum for n. Let u a word
of maximal length in

√

↓(w). This means that u is a maximal word such that uu is a
subword ofw. Thus we can factorizew asw = w1w2 where u ≼ w1 and u ≼ w2. Let us
now consider the word v = w1an+1w2an+1. We can easily see that uan+1 is a maximal
word of

√

↓ v, and that
√

↓(w) ⊊
√

↓(v).

It is important to see that a dividing set of
√

↓(w) is still a dividing set of
√

↓(v).
To show this, let us take x, y such that

√

↓(w)∕x ≠
√

↓(w)∕y. Then there exists a word
z made of letter {a1, ..., an} such that xz ∈

√

↓(w) but yz ∉
√

↓(w) (or the other way
around, but this case is symmetric and leads to the same conclusion). Seeing that all the
new words in

√

↓(v) are of the form uan+1 for u ∈
√

↓(w), we get that yz ∉
√

↓(v).
This concludes the validity of the dividing set.

Nowwe can also add a new element to this dividing set of
√

↓(v) : uan+1. To see this,
we can just observe that if

√

↓(w)∕x = � then
√

↓(v)∕x = {�, an+1} and
√

↓(v)∕uan+1 =
{�}. Indeed, if x ∈

√

↓(w), then xan+1xan+1 ≼ w1an+1w2an+1 = v, and the second
equality comes from the paragraph above. Thus we can add uan+1 to the dividing set,
thus giving that �(n + 2) ≥ �(n) + 1 > �(n). ⊓⊔

Corollary 2.9. Let w be a word of length n+ 2, if w has 2 letters appearing only once,
then �(

√

↓(w)) < �(n + 2).

Proof. Let a, b be the two letters appearing only once inw andw′ be the wordwwithout
a and b, we get |w′| = n. Let x ∈

√

↓(w) then xx ≼ w. However, as there is only one
a and b in w, x cannot contain an a or b. Thus, x ≼ w ⇔ x ≼ w′ and �(

√

↓(w)) =
�(
√

↓(w′)) ≤ �(n) < �(n + 2). ⊓⊔
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Let us introduce the notation c(n) = ⌈

n
3⌉. LetUn be defined asUn = Vc(n)Vc(n)Vn−2c(n).

For example, U7 = abcabca and U11 = abcdabcdabc.

Conjecture 2.10. ∀ n ∈ ℕ>0, �(
√

↓(Un)) = �(n) ≤ c(n)2 − c(n) + 3.

Remark 2.11. Experimentally, we observed that for n ≤ 11, �(n) ≤ c(n)2 − c(n) + 3.
The question is now to see if this can extend to larger words and be proven.

3 Substitution operator

Let us now consider the substitution operator.We consider a fixed alphabetΣ = {a1,… , an}.

Definition 3.1. Let K1,… , Kn ⊆ Γ∗ be n languages on an alphabet Γ that may be
different from Σ. The Kis define a substitution � ∶ Σ∗ → (Γ∗) that associates a Γ-
language with every word of Σ∗. Formally �(w) is given by

�(ai1ai2⋯ aim ) = Ki1 ⋅Ki2⋯Kim , �(�) = {�} .

This is then lifted to Σ-languages with

�(L) =
⋃

w∈L
�(w) .

We sometimes write La1←K1,...,an←Kn instead of �(L): this notation is convenient, e.g.,
when Ki = {ai} for most i’s. In such cases we may just write, e.g., xa3←K3 with the
meaning that letter different from a3 are unchanged by the substitution.

It is well known that if all the Ki are regular then �(L) is regular when L is (and we
say that � is a regular substitution).

Actually, the substitution preserves more : if each Ki + � is downward closed (for
i = 1,… , n) then � preserves downward closedness (and we say it is a downward closed
substitution). By showing this, we can imply in this case the regularity as downward
closed languages are regular.

Proposition 3.2. IfK1, ..., Kn are downward closed then �(L) is downward closed (hence
also regular).

Proof. Let z ∈ �(L) then z ∈ �(x) for some x = ai1⋯ aim ∈ L and z can be factorized
as z = z1⋯ zm with zi ∈ Kai . If now y ≼ z then y is some y1⋯ ym with yi ≼ zi for
i = 1,… , m, so yi ∈ Kai since each Kai is downward closed. Finally y ∈ �(x) ⊆ �(L).

Hence, �(L) is downward closed. ⊓⊔

Remark 3.3. We observe that for any substitution where the (Ki) are non-empty lan-
guages (not necessarily downward closed)we have ↓

(

La1←K1,...,an←Kn
)

= ↓(L)a1←↓(K1),...,an←↓(Kn).

The case of substitutions is well known and studied, and we will see in the next
proposition that there is an exponential lower bound for the state complexity of substi-
tutions even in the case of downward closed L and �.
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Example 3.4. Let L = {�, a1, ..., an} = ↓(Σ) and, for i = 1,… , n, Ki = (Σ ⧵ {ai})∗.
Write L′ for �(L) =

⋃

i Ai. Now a word in L′ cannot use all letters of Σ so if x is the
prefix of some word xy in L′ then x can only be continued by some y that does not use
all the letters of Σ ⧵ Σ(x). We see that the quotient L′∕x is (Σ ⧵ Σ(x))∗ so there is a
bijection between the subsets of Σ and the quotients of L′. Hence, �(�(L)) = 2n.

Proposition 3.5. Let Σ = {a1, ..., an}, and Ai = (Σ ⧵ {ai})∗. Then, let A[i, j] = Ai ⧢
↓(aji ), the words not having a

j+1
i as subword. LetL = {�, a1, ..., an}, (mi)1≤i≤n ∈ ℕn. Let

us define Ki = A[i, mi], then �(La1←K1,...,an←Kn ) =
∏

1≤i≤n(mi + 2) =
∏

1≤i≤n �(Ki).

Proof. Let u ∈ Σ∗, L∕u = {
∑

A[i, mi − ji] | a
ji
i subword of u, 1 ≤ ji ≤ mi + 1} with

the conventionA[i, j] = ∅ if j > i. Indeed, if u contains ji occurrences of ai then we can
still have mi − ji such occurrences in a suffix while staying in Ki, else we are not in Ki.
Thus we can take u such that it has 0 ≤ ji ≤ mi occurrences of ai and for each value in
{0, ..., mi + 1}n we get a different quotient of Ki, and we do this for each ai. Thus, there
are

∏

1≤i≤n(mi + 2) such quotients of La1←K1,...,an←Kn . Finally, Ki has mi + 2 quotients
: {A[i, j] | 0 ≤ j ≤ mi + 1}. Hence �(�(L)) =

∏

1≤i≤n �(Ki). ⊓⊔

Remark 3.6. We can actually see that Example 3.4 is a particular case of the previous
proof with mi = 0 for all i.

As the state complexity of the substitution is exponential in the general case, it can
be interesting to know if there exists a restriction for which the state complexity is poly-
nomial. We thus consider singular substitutions, that is to say substitutions La←K .

Let us start with the easiest case, when there exists words u, v such that L,K =
↓(u), ↓(v).

Proposition 3.7. Let L = ↓(u) and K = ↓(v) with u and v two words, and a ∈ Σ be a
letter. ThenL{a←K} = ↓(u{a←v}) and �(L{a←K}) = |u|− |u|a+ |u|a|v|+2 ≤ �(L)�(K).

Proof. Using Remark 3.3 we get thatLa←K = ↓(ua←v). We then apply Lemma 1.15 and
conclude. ⊓⊔

We now want to study the quotients of a more general substitution La←K , for this
we explain how to inductively compute quotients of substitutions. As in Definition 3.1,
we write �(R) for Ra←K .

Lemma 3.8. [8]

Let L be a language, we denote by L� =

{

∅, if � ∉ L ,
{�}, otherwise.

Let us introduce the basic rules of the computation of quotients given in [8] :

– b∕a =

{

∅, if b ≠ a ,
�, otherwise.

– (L ∪K)∕a = L∕a ∪K∕a.
– (L ⋅K)∕a = (L∕a).K ∪ L� .(K∕a).
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Remark 3.9. In the following we are going to use downward closed languages and their
quotients which are also downward closed. As L� = {�} for any non-empty downward
closed language L, the concatenation rule becomes in this case :

(L ⋅K)∕a = (L∕a) ⋅K + (K∕a) if L is non-empty. (1)

This property is essential to understand the structure of the quotients.

Remark 3.10. One could think that the case K = ∅ might be pathological. However n
our setting one can see that, if L is downward closed, then La←∅ = La←� .

Now that we have those basic rules for computing quotients, we want to see how we
can apply them in our case. For this we need to introduce the SRE formalism (for Simple
Regular Expressions) and show how the rules for computing quotients behave on what
we call products of atoms.

Definition 3.11 ([2]).
An atom is a (particular case of) regular expression � that is either a letter-atom

a + � with a ∈ Σ, or a star-atom B∗ with B ⊆ Σ.
A product of atoms (or product) I is a finite concatenation of atoms : I =

∏

1≤i≤n �i
where �i is an atom. It is a regular expression and the empty product denotes �.

An SRE E is a finite sum of products : E =
∑

1≤j≤m Ij . The empty sum denotes �.
We denote by JEK the language described by E. The SREs form a subclass of regular
expressions.

Remark 3.12. Atoms are included in products, that are included in SRE. Furthermore,
we might abuse notations and write E when what we mean is JEK. For example by
saying w ∈ E when w is a word.

The following theorem linking the SREs and downward closed languages justifies

this new representation. Recall that, in our context, L is directed
def
⇔ ∀x, y ∈ L ∶ ∃z ∈

L ∶ x ≼ z ∧ y ≼ z.

Theorem 3.13. [2,15] A language L on a finite alphabet Σ is downward closed if and
only if it can be defined by an SRE.

Furthermore L is directed if and only if it can be defined by a product.

A corollary is that any downward closed language is a finite union of directed languages.

Now that we introduced the concept of SREs, we need to understand how quotienting
behaves on them. For now we will focus on quotients of products of atoms.

Definition 3.14. Let I =
∏

i≤n �i be a product of atoms. A suffix product of I is any
product I ′ =

∏

i0≤i≤n �i for some i0.

We are now going to use this notion to describe the structure of the quotients of a
product.
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Lemma 3.15. Let I =
∏

i≤n �i be a product, then the quotients of I are exactly the
suffix products of I , with also the empty set if JIK ≠ Σ∗.

Proof. Let R be a quotient of I , there is a word x such that R = I∕x. Let us proceed by
induction on the length of x.

If |x| = 0, I∕x = I and I is a suffix product of itself.

Let x = x′b with |x′| ≥ 0, and let I ′ = I∕x′ be the suffix product we get by the
induction hypothesis. If I ′ = ∅, then I∕x = I ′∕b = I ′ = ∅ and it is valid. Now if I ′ is
non-empty, using the definition of suffix product, I ′ =

∏

j′≤i �i. Let �i0 = minj′≤i(b ∈
�i). If such an �i0 does not exist, then I∕b = ∅. Using the rules for the computation of
quotient, we have:

– (a + �)∕b =

{

∅, if b ≠ a
{�}, otherwise

– (B∗)∕b =

{

∅, if b ∉ B
B∗, otherwise

Thus, if �i0 exists, then I ′∕b = �i0
∏

i0<i
�i if �i0 is a star-atom and I ′∕b = � ⋅

∏

i0<i
�i if �i0 is a letter atom . Thus I ′∕b is a suffix product of I ′, which makes it a

suffix product of I .

Finally, if JIK ≠ Σ∗ then there existsw ∈ Σ∗ such thatw ∉ JIK, thus I∕w = ∅. And
if JIK = Σ∗ then for all w ∈ Σ∗, I∕w = Σ∗ = I ≠ ∅. ⊓⊔

Corollary 3.16. Let I be a product of atoms, and R1, R2 two quotients of I . Then one
of the quotient contains the other.

Having this result for the quotients of products of atoms will make it easier for us to
prove that quotients once we apply the substitution can be expressed in a compact form
in the case of downward closed language. For now let us show this result for product for
atoms.

Lemma 3.17. Let I be a product of atoms, K a downward closed language and a, b ∈

Σ, then �(I)∕b =

{

�(I∕b) + (K∕b) ⋅ �(I∕a) if a ≠ b ,
(K∕a) ⋅ �(I∕a) otherwise.

Proof. Let us proceed by induction on the length of I . If I is the empty product then
both terms give ∅ hence the equality.

If I = � ⋅ I ′, then �(� ⋅ I ′)∕b = (�(�)∕b) ⋅ �(I ′) + �(�)� ⋅ �(I ′)∕b. Now as �
and I ′ are downward closed and � ≠ ∅ we can use Equation (1). Hence, �(I)∕b =
(�(�)∕b) ⋅ �(I ′) + �(I ′)∕b.
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– If � = (a + �) then �(�)∕b = K∕b. If K∕b ≠ ∅, then �(I ′)∕b ⊆ (�(�)∕b) ⋅ �(I ′) =
(K∕b).�(I∕a), thus �(I)∕b = (K∕b) ⋅ �(I∕a). And as I∕b ⊆ I∕a, we get �(I∕b) ⊆
�(I∕a) ⊆ (K∕b) ⋅ �(I∕a). Hence, �(I)∕b = �(I∕b) + (K∕b) ⋅ �(I∕a).
If, on the other hand K∕b = ∅, then �(I)∕b = �(I ′)∕b = �(I ′∕b) + (K∕b) ⋅ �(I ′∕a)
by induction. And as K∕b = ∅ we get �(I)∕b = �(I ′)∕b = �(I ′∕b). Thus if a ≠ b
implies I ′∕b = I∕b we get �(I ′∕b) = �(I∕b) = �(I∕b) + (K∕b) ⋅ �(I∕a) as
I = (a + �)I ′ and K∕b = ∅. On the other hand, if a = b, then as K∕a = ∅,
�(I)∕a = ∅ = K∕a ⋅ �(I∕a).

– If � = (c + �) with c ≠ a, �(I)∕b = (�(c + �) ⋅ �(I ′))∕b = ((c + �) ⋅ �(I ′))∕b.
Thus if c = b, �(I)∕b = �(I ′) + �(I ′∕b) = �(I ′) = �(I∕b). And when c ≠ b and
b ≠ a, �(I)∕b = �(I ′)∕b = �(I ′∕b) + (K∕b) ⋅ �(I ′∕a) by induction. However as
I = (c + �)I ′, �(I ′∕b) + (K∕b) ⋅ �(I ′∕a) = �(I∕b) + (K∕b) ⋅ �(I∕a) = �(I)∕b.
Finally, if c ≠ b and b = a, �(I)∕a = �(I ′)∕a = (K∕a) ⋅ �(I ′∕a) = (K∕a) ⋅ �(I∕a).

– If � = B∗ with a ∉ B, then if b ∈ B we have B∗∕b ≠ ∅ which implies (K∕b) ⋅
�(I∕a) ⊆ �(I ′)∕b ⊆ (�(�)∕b) ⋅ �(I ′) = (B∗) ⋅ �(I ′) = �(I∕b). Thus �(I)∕b =
�(I∕b) + (K∕b) ⋅ �(I∕a).
When b ∉ B and b ≠ a, �(I)∕b = �(I ′)∕b = �(I ′∕b) + (K∕b) ⋅ �(I ′∕a) by
induction. And as neither a or b is in B it gives �(I ′∕b) + (K∕b) ⋅ �(I ′∕a) =
�(I∕b) + (K∕b) ⋅ �(I∕a) = �(I)∕b. On the other hand, when b ∉ B and b = a,
�(I)∕b = �(I ′)∕b = (K∕a) ⋅ �(I ′∕a) = (K∕a) ⋅ �(I∕a).

– Finally, if � = B∗ with a ∈ B, then �(�) = (Σ(K) ∪ (B ⧵ {a}))∗ = B′∗. If b ∈ B′
and a ≠ b then �(I)∕b = B′∗�(I ′). Now if b ∉ Σ(K) then B′∗�(I ′) = �(I∕b) =
�(I∕b) + (K∕b) ⋅ �(I∕a). If b ∈ Σ(K), B′∗�(I ′) = �(I∕a) = (K∕b) ⋅ �(I∕a) =
�(I∕b) + (K∕b) ⋅ �(I∕a). In the case where b ∈ B′ and a ≠ b, this means that
a ∈ Σ(K). Thus �(I)∕a = B′∗�(I ′) = �(I∕a) = K∕a ⋅ �(I∕a).
Now if b ∉ B′ and b ≠ a, �(I)∕b = �(I ′)∕b = �(I ′∕b) + (K∕b) ⋅ �(I ′∕a) by in-
duction. However as b ∉ B, �(I ′∕b) = �(I∕b). And as b ∉ B′, we get K∕b = ∅,
thus (K∕b) ⋅ �(I ′∕a) = (K∕b) ⋅ �(I∕a) = ∅. Hence �(I)∕b = �(I ′∕b) = �(I∕b) =
�(I∕b) + (K∕b) ⋅ �(I∕a). Finally, if b ∉ B′ and b = a we get K∕a = ∅ since
a ∉ Σ(K). Thus �(I)∕a = ∅ = K∕a ⋅ �(I∕a).

Thus, in the case where a = b, we get that �(I)∕a = K∕a ⋅ �(I∕a). And when a ≠ b
we get �(I)∕b = �(I∕b) +K∕b ⋅ �(I∕a). ⊓⊔

This result is interesting but as we do not want to limit ourselves to product of atoms,
we need to extend it. And as the substitution and the quotient distribute over sums, we
can easily extend this lemma to general downward closed languages.

Proposition 3.18. LetL,K ⊂ Σ∗ be languages with L,K downward closed and a ≠ b ∈
Σ, we compute the quotients of La←K as follows :

– �(L)∕� = �(L),
– �(L)∕b = �(L∕b) +K∕b ⋅ �(L∕a),
– �(L)∕a = K∕a ⋅ �(L∕a).
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Proof. Since L is downward closed it can be written as a sum of product L =
∑

j Ij ,
Let b ≠ a a letter.

�(L)∕b = �
(
∑

j
Ij
)

∕b

=
∑

j
�(Ij)∕b

=
∑

j

(

�(Ij∕b) + (K∕b).�(Ij∕a)
)

using Lemma 3.17
=
∑

j
�(Ij∕b) +

∑

j
(K∕b).�(Ij∕a)

= �(L∕b) + (K∕b).�(L∕a) .

A similar computation shows �(L)∕a = K∕a ⋅ �(L∕a). ⊓⊔

Now that we know the structure of the quotients by a letter of the substitution in the
case of downward closed languages, we can study the state complexity (i.e., quotients
by words).

Proposition 3.19. LetL,K be downward closed languages such that Σ(L)∩Σ(K) = ∅,
with K ≠ ∅. For every R quotient of �(L), there exists a pair (P ,Q) where Q ∈ (L)
and P ∈ (K) ∪ {{�}}, such that R = P .�(Q).

Proof. Let us writeΨ for the function associating, with every quotient R of �(L), a pair
(P ,Q) such that R = P .�(Q): we want to show that this function is well defined. For a
quotient R of �(L), there exists x ∈ Σ∗ such that R = �(L)∕x. Let us prove the propo-
sition by induction on the length of x.

If |x| = 0, R = �(L) = {�}.�(L), thus the pair (L, {�}) fulfills the claim.
If x = x′b with |x′| ≥ 0 and b a letter, let us write R′ = �(L)∕x′, by induction

hypothesis we have thatR′ = P ′.�(Q′). Using Proposition 3.18 we get thatR = R′∕b =
(P ′ ⋅ �(Q′))∕b = P ′∕b ⋅ �(Q′) + � ⋅ �(Q′)∕b. However, if P ′∕b ≠ ∅, as �(Q′)∕b ⊆ �(Q′)
because L is downward closed and � ∈ P ′∕b, then �(Q′)∕b ⊆ P ′∕b ⋅ �(Q′). Thus, if
P ′∕b ≠ ∅, then R = P ′∕b ⋅ �(Q′).

If P ′∕b = ∅ we have R = �(Q′)∕b. If a = b then R = K∕a ⋅ �(Q′∕a) and this
fulfills the claim. On the other hand, if b ≠ a, R = �(Q′∕b) + K∕b.�(Q′∕a). This is
not of the expected form. However, using the hypothesis that the alphabets for L and
K are disjoints, we see that only one of the terms is non-empty. In both cases we have
quotients of K or {�} and of L. ⊓⊔

Remark 3.20. If L and K are on the same alphabet and are downward closed, then the
function Ψ is not well defined. For example, with L = ↓ ab + ↓ ba and K = ↓ bbc, we
have that La←K∕b = ↓ bcb + ↓ bbc.

Remark 3.21. Let L,K be downward closed languages, if R quotient of �(L) is non-
empty, then for all pairs P ,Q ∈ ((K) ∪ {{�}}) × (L) such that R = P ⋅ �(Q) we
have P ≠ ∅ and Q ≠ ∅.
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Theorem 3.22. Let L,K be downward closed languages based on disjoints alphabets.
Then �

(

La←K
)

≤ �(L)�(K).

Proof. Using Proposition 3.19 we know that the function Ψ is well defined when L,K
are downward closed languages on disjoints alphabets.

Let us show that Ψ is injective. Take any two quotients R ≠ R′ of �(L), and assume
Ψ(R) = Ψ(R′) = (P ,Q). Then R = P ⋅ �(Q) = R′ which is absurd. Thus Ψ is injective.

The injectivity of Ψ gives the upper bound �(�(L)) ≤ |((K) ∪ {{�}}) ×(L)| ≤
(�(K)+1)(�(L)). However, ifL ≠ Σ(L)∗ andK ≠ Σ(K)∗, then they both have an empty
quotients and the Remark 3.21 applies. Hence all quotients of �(L) have their image by
Ψ in a set having (�(K))(�(L) − 1)+1 elements. Thus �(La←K ) ≤ (�(L) − 1)�(K) + 1.

We now need to deal with the cases where we do not have ∅ as a quotient in one of
the languages. Those cases are easier but the methods are different to reach the upper
bounds.

– If L = Σ(L)∗, �(L) = (Σ(L) ⧵ {a} ∪ Σ(K))∗, which is equal to Σ′∗ on the result
alphabet Σ′ = Σ(L) ⧵ {a} ∪ Σ(K). Thus, in this case �(La←K ) = 1 ≤ �(L)�(K).

– If K = Σ(K)∗, using Proposition 3.18 when b ∈ Σ(K) gives �(L)∕b = K∕b ⋅
�(L∕a) = K ⋅ �(L∕a), and if c ∉ Σ(K), �(L)∕bc = (K ⋅ �(L∕a))∕c = �(L∕a)∕c =
�(L∕ac). Thus a wordw ∈ (Σ(L)∪Σ(K))∗ can be factorized asw = k1 ⋅ l1⋯ kn ⋅ ln
with ki ∈ Σ(K)∗ and li ∈ Σ(L)∗. This gives �(L)∕w = �(L∕(al1⋯ aln)) if ln ≠ �

and �(L)∕w = K ⋅ �(L∕(al1⋯ ln−1a)) . Thus �(�(L)) ≤ �(L) = �(L)�(K).

Thus, in all those cases, �(La←K ) ≤ �(L)�(K). ⊓⊔

Remark 3.23. One can find in Proposition B.1 the construction of the automaton for
�(L) based on one forL and one forK . This can give an insight, a more visual argument
for the definition of Ψ.

The following corollary is the extension of Theorem 3.22 to a regular substitution.

Corollary 3.24. Let L and (Kai )ai∈Σ downward closed languages such that all |Σ| + 1
languages have pairwise disjoints alphabets, then we have that

�(La1←Ka1 ,...,an←Kan ) ≤ �(L)
∏

1≤i≤n
�(Kai )

Proof. As the alphabets are pairwise disjoints, we can decompose the substitution as a
composition of singular substitutions :La1←Ka1 ,...,an←Kan = (...(La1←Ka1 )a2←Ka2 ...)an←Kan .
Using the iteration of the bound fromTheorem 3.22we have that �(La1←Ka1 ,...,an←Kan ) ≤
�(L)

∏

1≤i≤n �(Kai ). ⊓⊔

This result gives an exponential bound for the substitution, which hints that even
under the restrictive hypothesis of pairwise disjoint alphabets it seems hard to do bet-
ter than exponential. We proved in Proposition 3.5 an example that reached this bound
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without this hypothesis, it could be interesting to try to reach it with the hypothesis on
the alphabets for arbitrary �(Ki).

Furthermore, while researching on the singular substitution we could not find a fam-
ily of downward closed languages (Li, Ki)i whose substitutions (�i(Li)) had an expo-
nentially growing state complexity. We thus make the following conjecture :

Conjecture 3.25. IfL andK are downward closed languages, then �(La←K ) ≤ �(L)�(K).

In order to prove Conjecture 3.25 we need to avoid any assumption on the alphabets.
Let us first prove that if L is a product of atoms then the quadratic bound holds.

Lemma 3.26. Let I be a product andK a downward closed language, then any quotient
of Ia←K can be written as PK .�(PI ) where PK is either a quotient of K or {�} and PI
is a quotient of I .

Proof. Let R be a quotient of Ia←K , R = Ia←K∕x. Let us proceed by induction on the
length of x.

If |x| = 0, R = Ia←K = {�}.�(I) which verifies the claim.

If x = x′b, we write R′ = Ia←K∕x′ = P ′K .�(P
′
I ). We have that R = R′∕b =

P ′K∕b.�(P
′
I ) + �(P

′
I )∕b as P

′
K∕b is either empty or downward closed thus containing �.

If P ′K∕b ≠ ∅, we have R = P
′
K∕b.�(P

′
I ) as �(P

′
I )∕b ⊆ �(P

′
I ) .

Now if P ′K∕b = ∅, R = �(P ′I )∕b = �(P ′I∕b) + K∕b.�(P
′
I∕a). Now as showed in

Lemma 3.15, there are I1, I2 suffix products of the product of P ′I such that P ′I∕b = I1
and P ′I∕a = I2. And as showed in Corollary 3.16, one of the quotient contains another.

– If I1 ⊆ I2, then �(I1) ⊆ K∕b.�(I2), thus R = K∕b.�(P ′I∕a).
– If I2 ⊆ I1 and I2 ≠ I1, then we have that I2 = I1∕a. In fact we have that I1 =
∏

j1≤i �i and I2 =
∏

j2≤i �i with j1 < j2. And the property is �j2 = mini(a ∈ �i)
thus as j1 < j2, we have that �j2 = minj1≤i(a ∈ �i). Hence, I1∕a = I2. Now
�(I1)∕b = �(I1∕b) + K∕b.�(I1∕a) = �(I1∕b) + K∕b.�(I2). Thus K∕b.�(I2) ⊆
�(I1)∕b ⊆ �(I1). Thus, R = �(I1) = {�}.�(P ′I∕b). ⊓⊔

Theorem 3.27. Let I be a product of atoms and K a downward closed language, then
�(Ia←K ) ≤ �(K)�(I).

Proof. If we assume that I,K are notΣ∗, using Lemma 3.26we have thatR = PK .�(PI ) =
∅ iff PK = ∅ or PI = ∅. Thus, �(Ia←K ) ≤ �(K)(�(I) − 1) + 1 ≤ �(K)�(I).

Let us now consider the case where I or K is Σ∗.

– If I = Σ(I)∗ then Ia←K = (Σ(I)⧵{a}∪Σ(K))∗. Hence, �(Ia←K ) = 1 ≤ �(I)�(K).
– If K = Σ(K)∗ then if I∕a = ∅, �(Ia←K ) = �(I). Otherwise we are just replacing
the a in the atoms by Σ(K). Hence �(Ia←K ) ≤ �(I) = �(I)�(K). ⊓⊔
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3.1 Singular substitution when K = ↓(�(L))

As showed in Remark 3.20, there exists singular substitutions having quotients that can-
not be written as products of quotients. To understand their apparition, we can study
what happens when K = ↓(Σ(L)).

Lemma 3.28. Let I = �0I ′ be a product that does not contain atoms of the type B∗
with a ∈ B, and � the substitution of a by K = Σ(I) ∪ �.

Then (I) = {�0I ′} ∪(I ′). And(�(I)) = {�(�0)�(I ′)} ∪(�(I ′)).

Proof. Let us write I =
∏

0≤i≤n �i. Then (I) = {
∏

j≤i≤n �i|0 ≤ j ≤ n} as the
quotients of a product are its suffix products as proved in Lemma 3.15. Thus, (I) =
{�0I ′} ∪(I ′).

Let us abuse notations and denote by (L) ⋅K the set {P ⋅K | P ∈ (L)}. Let us
now prove(�(I)) = (�(�0))�(I ′) ∪(�(I ′)). Let us proceed by double inclusion.

Let R be a quotient in(�(I)), then R = �(I)∕x with x ∈ Σ∗. Let x′ be the longest
prefix of x in �(�0), such that x = x′y. If x ≠ x′, R = �(I ′)∕y ∈ (I ′). Otherwise
R = �(�0)∕x �(I ′) ∈ (�(�0))�(I ′).

For the other direction, let R ∈ (�(�0))�(I ′), we have R = �(�0)∕x �(I ′). Using
the proof above, R = �(I)∕x ∈ (�(I)). Then, as � preserves downward closedness,
(�(I ′)) ⊆ (�(I)).

Now, let us prove that in our case,(�(�0))�(I ′)∪(�(I ′)) = �(�0)�(I ′)∪(�(I ′)).

– If �0 = (b+�)with b ≠ a, then(�(�0))�(I ′)∪(�(I ′)) = {∅, �(I ′), (b+�)�(I ′)}∪
(�(I ′)) = {(b + �)�(I ′)} ∪(�(I ′)) = �(�0)�(I ′) ∪(�(I ′)) as ∅ and �(I ′) are
already in (�(I ′)) if �(I ′) ≠ Σ∗, which is verified as we do not have atoms of the
form B∗ with a ∈ B.

– If �0 = (a + �). Then(�(�0))�(I ′) ∪(�(I ′)) = {∅, �(I ′), K�(I ′)} ∪(�(I ′)) =
{K�(I ′)} ∪(�(I ′)) = �(�0)�(I ′) ∪(�(I ′)).

– If �0 = B∗ with a ∉ B, then(�(�0))�(I ′)∪(�(I ′)) = {∅, B∗�(I ′)}∪(�(I ′)) =
{B∗�(I ′)} ∪(�(I ′)) = �(�0)�(I ′) ∪(�(I ′)). ⊓⊔

Proposition 3.29. Let I be a product that does not have atoms B∗ where a ∈ B, and
K = Σ(I) ∪ {�}, then(�(I)) = �((I)), meaning that � and commute.

Proof. As K and I are based on the same alphabet, let us write Σ = Σ(I) = Σ(K). First
let us show that the proposition is true for atoms �.

– Let � = (b + �), when b ≠ a or � = B∗ when a ∉ B, then as � is the identity on
those atoms, the claim ensues. To prove this, we can observe that if an atom does
not contain the letter a then its quotients will not contain it either, thus � will be the
identity on the quotients also.

– Finally, when � = (a + �),(�(a + �)) = (K) = {K, �, ∅}.
And �((a + �)) = �({a + �, �, ∅}) = {K, �, ∅}.
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Hence, the commutation works on those atoms.

Now let us consider products and prove the proposition by induction on the number
of atoms in a product :

If I is the empty product then �((I)) = ∅ = (�(I)).
If I = �I ′, then we have :

(�(�I ′)) = �(�)�(I ′) ∪(�(I ′)) using Lemma 3.28
= �(�I ′) ∪(�(I ′)) using the definition of �
= �(�I ′) ∪ �((I ′)) by induction hypothesis
= �(�I ′ ∪(I ′)) using the properties of �
= �((�I)) using Lemma 3.28 ⊓⊔

Remark 3.30. The equality �(I∕x) = �(I)∕x is false in general, the equality fromPropo-
sition 3.29 only happens when considering all the quotients together. For example take
I = ↓(abc). We have �(I∕b) = ↓(c) and �(I)∕b = ↓(bc). However

(�(I)) = {↓((a + b + c)bc), ↓(bc), ↓(c), �, ∅} = {�(↓(abc)), ↓(bc), ↓(c), �, ∅} = �((I)).

Remark 3.31. Even if the commutation is not true in the general case, what we really are
interested in is the cardinality. Hence, it would be interesting to know if the following
inequality holds : let L be a downward closed language, and K = Σ(L) ∪ {�}, then
|(�(L))| ≤ |�((L))|.

In the case where L is a product and K = ↓(Σ(L)) we are under the assumptions of
Theorem 3.27, but we can show that we do not increase the state complexity by another
way that follow what we did in this section.

Proposition 3.32. Let w ∈ Σ∗, then �
(

↓(w)a←Σ(w)
)

≤ �(↓(w)).

Proof. Let us show that every quotient R of ↓(w)a←Σ(w) can be written as �(P ) with P
quotient of ↓(w).

LetR be a quotient of ↓(w)a←Σ(w), there exists x ∈ Σ∗ such thatR = ↓(w)a←Σ(w)∕x.
Let us proceed by induction on the length of x. If x = �, R = ↓(w)a←Σ(w) = �(↓(w)).

If x = x′b then letR′ = ↓(w)a←Σ(w)∕x′. We have thatR′ = �(P ′) by induction. Thus
R = R′∕b = �(P ′)∕b. Using Proposition 3.18, we get that R = �(P ′∕b) + �.�(P ′∕a).
However as P ′ is a quotient of ↓(w) it can be written as P ′ = ↓(v) with v a suffix of w.
Thus if b appears before a in v then �(P ′∕a) ⊆ �(P ′∕b), else �(P ′∕b) ⊆ �(P ′∕a). Thus
there exists P a quotient of ↓(w) such that R = �(P ).

Finally, we also have to consider the empty quotient, ∅ = �(∅).

Hence �(↓(w)a←Σ(w)) ≤ �(↓(w)). ⊓⊔
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4 Conclusion

In this study we considered the state complexity of the n-th root and substitution opera-
tions when restricted to upward closed and downward closed languages. These questions
have not yet (to the best of our knowledge) been addressed. This can be seen as trying to
better understand these two subregular classes of languages. We found that in the case
of upward closed languages, the root operations still have an exponential lower bound.
We did not conclude for downward closed languages, but conjecture that if the language
is made of subwords of a word, then the state complexity will be quadratic for the square
root.

We also studied the state complexity of the substitution in the case of downward
closed languages. We showed an exponential upper bound in the general case, and when
restricting to singular substitutions, we proved a quadratic upper bound when the two
languages are on disjoint alphabets and conjecture a quadratic bound in the general case
of two downward closed languages. Furthermore, when the language we make the sub-
stitution on is directed, we showed a quadratic upper bound. It might be interesting in
future studies to answer the conjecture on the singular substitution of downward closed
languages and define/study the substitution for upward closed languages.

This works takes part in the more general goal of better understanding upward closed
and downward closed languages that appear in practical applications such as automatic
verification based on well-quasi-orderings. In this way, it is important to understand bet-
ter how these classes of languages are structured and how they behave to come up with
better data structures allowing to manipulate them more efficiently.

I warmly thank Philippe Schnoebelen again for his advice, feed-backs, suggestions
and help in general.
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A Missing proofs on root operators

An extremely useful tool to obtain lower bounds on the state complexity of languages
is the use of dividing sets.

Definition A.1. Let L ⊆ Σ∗, then  = {x1, ..., xn} is a dividing set for L if and only
if for all xi ≠ xj , there exists zi,j ∈ Σ∗ such that xizi,j ∈ L and xjzi,j ∉ L or
xizi,j ∉ L and xjzi,j ∈ L.

The following fact explains why those dividing sets are useful when studying the
state complexity of a language.

Fact A.2 Let  be a dividing set of L. Then any DFA recognizing L must have at least
| | states.

Proposition A.3. Let v,w be two words with different alphabets: Σ(v) ≠ Σ(w). Then
√

↑(Vn)∕v ≠
√

↑(Vn)∕w.

Proof. As v and w are based on different alphabets, there is a letter of Vn that is either
in v and not inw or inw and not in v. Without loss of generality, let us assume the letter
a is in v but not in w.

Then let x be Vn with a removed. Thus, Vn is a subword of (vx)k but not of (wx)k.
Thus, vx ∈ k

√

↑(Vn) but wx ∉ k
√

↑(Vn). Hence, k
√

↑(Vn)∕v ≠ k
√

↑(Vn)∕w since one
contains x but not the other. ⊓⊔

Proposition A.4. Let n be a dividing set of maximal size for
√

↑(Vn).
Then n

⋃

nan+1
⋃

an+1(n−1 ⧵ {Vn−1})an is a dividing set for
√

↑(Vn+1).

Proof. Let u, v in n
⋃

nan+1, If they do not come from the same summand, then their
alphabet is not the same as one uses an+1 while the other does not. Thus by Proposi-
tion A.3, their quotients are different.

If they come from the same summand, first let us assume they come from n. Then
there is a word x ∈ Σ∗ such that ux ∈ Ln and vx ∉ Ln. Thus Vn is a subword of uxux
but not of vxvx, hence un+1 is a subword of uxan+1uxan+1 and not of vxan+1vxan+1.
Thus, Ln+1∕u ≠ Ln+1∕v.

If they both are from nan+1. Let’s write u = u′an+1 and v = v′an+1. There is
x′ ∈ Σ∗ such that Vn is subword of u′x′u′x′ but not of v′x′v′x′ or the other way around.
Thus un+1 is a subword of u′x′an+1u′x′an+1 but not of v′x′an+1v′x′an+1 as Vn is not a
subword of it and Vn is a subword of Vn+1.

Let us consider x ≠ y ∈ an+1(n−1⧵{Vn−1})an. Let uswrite x and y as x = an+1x′′an
and y = an+1y′′an. As x′′, y′′ ∈ n−1, there exists z ∈ Σ∗ such that x′′zx′′z ∈ ↑(Vn−1)
and y′′zy′′z ∉ ↑(Vn−1). ThusVn+1 ≼ an+1x′′anzanan+1an+1x′′anzanan+1 butVn+1 is not
a subword of an+1y′′anzanan+1an+1y′′anzanan+1. Thus, x and y give different quotients.
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If x ∈ an+1(n−1 ⧵ {Vn−1})an and y ∈ n, as x contains an+1 but not y, the proof of
Proposition 2.3 entails that their quotients are different.

If x ∈ an+1(n−1 ⧵ {Vn−1})an and y ∈ nan+1, let us write x = an+1x′′an and
y = y′an+1.

As x′′an ∈ n, if x′′an ≠ y′, there exists z ∈ Σ∗ such that x′zx′z ∈ ↑(Vn) and
y′zy′z ∉ ↑(Vn) where x′ = x′′an, as x′ ≠ y′. Thus, Vn+1 ≼ an+1x′zan+1an+1x′zan+1 =
(xzan+1)2 but Vn+1 is not a subword of y′an+1zan+1y′an+1zan+1 = (yzan+1)2. Thus x
and y give different quotients.

If x′ = y′, then x = an+1x′′an, the nice thing is that by taking z = Vn−1 we have
Vn ≼ x′′anzx′′an = x′zx′ which gives Vn+1 ≼ x′′anan+1zx′′anan+1 = yzy but Vn+1
is not a subword of xzx = an+1x′′anzan+1x′′an, as long as x′′ ≠ Vn−1. Thus x, y give
different quotients.

Thus, an+1(n−1 ⧵ Vn−1)an
⋃

n
⋃

nan+1 is a dividing set for
√

↑(Vn+1). ⊓⊔

Proposition A.5. For n ≥ 1, �(
√

↑(Vn)) ≥ (
1
√

2
− 1
4 )(

√

2 + 1)n ≈ 0.46 × 2.41n.

Proof. Using Proposition A.4 we have that an+1(n−1 ⧵Vn−1)an
⋃

n
⋃

nan+1 is a di-
viding set for

√

↑(Vn+1). Thus for all n ∈ ℕ>0 we can create dividing sets n of
√

↑(Vn)
verifying |n+2| ≥ 2|n+1| + |n| − 1.

Let vn = |n| −
1
2 , we have the equation : vn+2 ≥ 2vn+1 + vn. Thus vn ≥ wn where

w0 = v0 = − 12 , w1 = v1 =
3
2 and wn+2 = 2wn+1 + wn. And using the formula for

recurrent sequences of order 2, we getwn = (
1
√

2
− 1
4 )(

√

2+1)n−( 1√
2
+ 1
4 )(1−

√

2)n. Thus

asymptotically,wn ∼ (
1
√

2
− 1
4 )(

√

2+1)n and |n| ≥ 0.46(2.41)n. In fact, by computing
the first values and then using the asymptotic analysis, we get |n| ≥ 0.46(2.41)n for
n ≥ 1. ⊓⊔

Definition A.6. For w ∈ Σ∗ we denote with CS(w) the set
⋃

w=tv t⧢ v. This is the set
of words obtained from w by one “cut and shuffle” move.

Proposition A.7. LetVn be a n-letter word of length n,CS(Vn) = {minimal words of
√

↑(Vn)}
and ↑(CS(Vn)) =

√

↑(Vn).

Proof. Let u be a word that can be obtained by a cut and shuffle of Vn, u ∈ t⧢ v where
Vn = tv.

Let us take r = vt, we have

u2 ∈ (t⧢ v)(v⧢ t) ⊆ Vn ⧢ r ⊆ ↑(Vn) .

Hence, u ∈
√

↑(Vn), and as
√

↑(Vn) is upward closed, ↑(CS(Vn)) ⊆
√

↑(Vn).
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Let u ∈
√

↑(Vn) such that |u| = n, which implies that u is minimal in
√

↑(Vn). We
have u2 ∈ ↑(Vn). Let us call u1 the longest prefix of Vn that is a subword of u. Then as
Vn us a subword of u2, we have that the suffix u2 such that Vn = u1u2 is a subword of
u too. Finally, as |u| = |Vn| = |u1| + |u2| and u1, u2 have different letters, we have that
u ∈ u1 ⧢ u2.

Hence u ∈ CS(Vn), and since any upward closed L is
⋃

u minimal in L ↑(u), we get
↑(CS(Vn)) =

√

↑(Vn). ⊓⊔

Proposition A.8. Let Vn = a1a2⋯ an be word of length n where all letters are different.
Then |CS(Vn)| = 2n − n.

Proof. It is quite easy to see that for w = tv there are
(

|w|
|t|

)

different words in t⧢ v, but
one of them is w. Thus |CS(Vn)| =

∑

0≤|t|≤n−1
( n
|t|

)

− (n − 1) = 2n − n. ⊓⊔

B Missing proofs on the substitution operator

Proposition B.1. The substitution operator preserves regularity.

Proof. Weknow this sincewe proved it preserves the closedness and upward closed/downward
closed languages are regular languages, but this is an occasion to explain the classical
construction of the automaton for the substitution, which might help to visualize better
the situation.

Let us consider the classical construction for the substitution. Let us call L,K

the automata for L,K . We modifyL in the following way: For every transition q
a
←←→ q′

in L that reads the letter a, we insert a copy of K without final states, create an �-
transition from q to the initial state of (that copy of) K , and from each final state of
K we add an �-transitions to q′. Finally, we remove the original q

a
←←→ q′ transition, de-

terminize the resulting automaton, and obtain a DFA for the substitution La←K .

In order to prove that the construction is correct, let us call the automaton before
the determinization, and let us show that L() = La←K . Since the determinization pro-
cess preserves the language, we would have the validity of the automaton.

Let x ∈ La←K , there exists xL ∈ L such that xL = x1ax2...xn−1axn with xi ∈ Σ∗
and x = x1y1x2...xn−1yn−1xn with yi ∈ K . Let q0, ...qr be the path of xL in L. Then
by inserting the path for yi inK where there are transitions labeled a we get a path for
x in  using the �-transitions. Thus La←K ⊆ L().

Let x ∈ L() then by studying the path that x follows in the automaton, we factorize
x under the form x = x1y1x2...xn−1yn−1xn with xi ∈ Σ∗ and yi ∈ K . Furthermore,
the construction implies that xL = x1ax2...xn−1axn ∈ L as we inserted K on edges
labeled by a. Thus L() ⊆ La←K . ⊓⊔
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C Missing proofs on iteration operator

Proposition C.1. In the case of L upward closed, with state complexity n, the upper
bound k(n − 1) + 1 on the state complexity of Lk is tight for |Σ| ≥ 1.

Proof. First of all the bound k(n−1)+1 corresponds to the concatenation upper bound
applied k times. Thus is it a valid upper bound for Lk. We now have to show that it is
actually tight.

Let Ln = a
n−1

a
∗ be the language of words having at least n − 1 a, this gives Lkn =

a
(n−1)k

a
∗. Let w ∈ Ln, and x a word such that w ≼ x, then x has more a’s than w,

implying x ∈ Ln. The quotients of Ln are {aia∗ | 0 ≤ i ≤ n − 1}. Hence, Ln has state
complexity n. Finally, using the same idea, Lkn has state complexity (n − 1)k + 1. ⊓⊔
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