On the state complexity of subword closed languages

Jérôme Guyot

ENS Paris-Saclay - Université Paris-Saclay

écolenormale supérieure paris-saclay-

Jérôme Guyot **[On the state complexity of subword closed languages](#page-33-0)** 1 / 30

Contents

[Introduction](#page-2-0)

[Background](#page-4-0) [State complexity](#page-5-0) [Subword closed languages](#page-11-0)

[Substitution of subword closed languages](#page-14-0) [Substitution : general / singular](#page-15-0) [Computing quotients](#page-21-0) [Bounding the state complexity](#page-26-0)

Introduction

This is the canonical automaton for $L = \{\epsilon, \text{a}, \text{b}, \text{ab}\}.$

How large is the canonical automaton for $L^{a \leftarrow L}$?

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 3 / 30 30 30

Motivations

- ▶ Finite state automaton are often used as data structure
- \blacktriangleright Their size is important in the complexity analysis.
- ▶ In verification of well structure systems, some algorithms use words ordered by the subword ordering.

Background

[Introduction](#page-2-0)

[Background](#page-4-0) [State complexity](#page-5-0) [Subword closed languages](#page-11-0)

[Substitution of subword closed languages](#page-14-0) [Substitution : general / singular](#page-15-0) [Computing quotients](#page-21-0) [Bounding the state complexity](#page-26-0)

State complexity of a regular language

Definition : State complexity

The state complexity of L noted $sc(L)$ is the number of states in the canonical automaton for L.

 \blacktriangleright Easy to visualize but is not practical for formal proofs.

State complexity of a regular language

Definition : State complexity

The state complexity of L noted $sc(L)$ is the number of states in the canonical automaton for L.

 \blacktriangleright Easy to visualize but is not practical for formal proofs.

Definition : Left quotients and quotient complexity

$$
\blacktriangleright L/u = \{v \text{ such that } uv \in L\}.
$$

$$
\triangleright
$$
 R(L) is the set of all left quotients of L.

 \triangleright $\kappa(L) = |\mathcal{R}(L)|$ is the quotient complexity of L.

Summary : $\kappa(L)$ is the number of different left quotients of L.

State complexity of a regular language II

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 7 / 30

State complexity of a regular language II

Theorem (Myhill, Nerode 1957) (Brzozowski [2009\)](#page-32-0) $\kappa(L) = \mathsf{sc}(L)$

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 7 / 30

State complexity of a function

$$
\blacktriangleright
$$
 Take $f : Reg \longrightarrow Reg$

► How does
$$
\kappa(f(L))
$$
 relate to $\kappa(L)$?

Definition

The *state complexity* of f is the function $\phi_f : \mathbb{N} \longrightarrow \mathbb{N}$ such that

$$
\phi_f(n) = \max_{\kappa(L) \leq n} \kappa(f(L))
$$

State complexity of a function

$$
\blacktriangleright
$$
 Take $f : Reg \longrightarrow Reg$

► How does
$$
\kappa(f(L))
$$
 relate to $\kappa(L)$?

Definition

The *state complexity* of f is the function $\phi_f : \mathbb{N} \longrightarrow \mathbb{N}$ such that

$$
\phi_f(n) = \max_{\kappa(L) \leq n} \kappa(f(L))
$$

Examples

$$
\phi_{\cap}(n) = \max_{\kappa(L_1), \kappa(L_2) \le n} \kappa(L_1 \cap L_2) = n^2
$$

$$
\phi_{\text{complement}}(n) = \max_{\kappa(L) \le n} \kappa(\bar{L}) = n
$$

$$
\phi_{\text{mirror}}(n) = \max_{\kappa(L) \le n} \kappa(L^R) = 2^n
$$

Can we compute or at least bound ϕ_f ?

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 8 / 30

Subword closed languages

Definition : Subwords x subword of y, noted $x \preccurlyeq y$ iff $y = u_0 \underline{x_1} u_1 \cdots u_{n-1} \underline{x_n} u_n$ with $\underline{x} = \underline{x_1 \cdots x_n}$ and $\forall i \ u_i \in \Sigma^*$

Example aab ≼ abbaaba

Definition : Subword closure $\downarrow(L) = \{x \mid \exists y \in L, x \leq y\}$ L is subword closed iff $\mathcal{L}(L) = L$.

L is subword closed if any subword of a word of L is in L.

Subword closed languages II

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 10 / 30 / 30 / 30

State of the art

State complexity for subword-closed languages (J. Brzozowski et al. [2014\)](#page-32-1) (Hospodár [2019\)](#page-33-1)

Operation	Upper Bound	Tightness requirement
$L \cap K$	$mn - (m + n - 2)$	$ \Sigma \geq 2$
$L \cup K$	mn	$ \Sigma \geq 4$
$L \setminus K$	$mn - (n - 1)$	$ \Sigma \geq 4$
$L \oplus K$	mп	$ \Sigma \geq 2$
$L \cdot K$	$m + n - 1$	$ \Sigma \geq 2$
L^* (and L^+)	2	$ \Sigma \geq 2$
I^R	$2^{n-2}+1$	$ \Sigma \geq 2n$
l^k	$k(n - 1) + 1$	$ \Sigma > 2$

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 11 / 30

Substitution of subword closed languages

[Introduction](#page-2-0)

[Background](#page-4-0) [State complexity](#page-5-0) [Subword closed languages](#page-11-0)

[Substitution of subword closed languages](#page-14-0) [Substitution : general / singular](#page-15-0) [Computing quotients](#page-21-0) [Bounding the state complexity](#page-26-0)

Substitutions

Definition

Let $S = (K_1, \ldots, K_n)$ a set of languages and $\Sigma = \{a_1, \ldots, a_n\}$ an alphabet, we define ρ such that

$$
\rho(\{\epsilon\}) = \{\epsilon\}
$$

$$
\rho(\{a_i\}) = K_i
$$

$$
\rho(L_1 \cdot L_2) = \rho(L_2) \cdot \rho(L_2)
$$

$$
\rho(L_1 + L_2) = \rho(L_1) + \rho(L_2)
$$

We can also write
$$
L^{a_1 \leftarrow K_1, \ldots, a_n \leftarrow K_n}
$$
.

Definition : Singular substitution
If
$$
\rho(\{a_i\}) = \begin{cases} K & \text{if } a_i = a \\ \{a_i\} & \text{otherwise} \end{cases}
$$

Jérôme Guyot **State Complexity of subword closed languages** 13 / 30 $\frac{13}{30}$ / 30

Questions

Proposition

If K_1, \ldots, K_n are subword closed, then $\rho(L)$ is subword closed.

Open problems :

 $\phi_\mathsf{sub} \leq n^{\mathcal{O}(1)}$ for subword closed languages ?

 $\kappa(L^{a \leftarrow K}) \leq \kappa(L) \kappa(K)$ for subword closed languages ?

Toy example

Take $L = \{\epsilon, a_1, \ldots, a_n\}$, and $K_i = (\Sigma \setminus \{a_i\})^*$.

Figure: Automaton of K_i

Figure: Automaton of L

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 15 / 30

Toy example II

Let us prove that $\kappa(\rho(L)) = 2^n$:

\n- $$
\rho(L) = \bigcup_i K_i
$$
 = words not containing all letters of Σ .
\n- $\rho(L)/x = \rho(L)/y$ iff $\Sigma(x) = \Sigma(y)$
\n

Proof
\nIf
$$
a \in \Sigma(x)
$$
 and $a \notin \Sigma(y)$, let $w = \Delta_{a_i \neq a} a_i$. Then $xw \notin \rho(L)$ but
\n $yw \in \rho(L)$, thus $\rho(L)/x \neq \rho(L)/y$.

If $\Sigma(x) = \Sigma(y)$ then for all $w \in \Sigma^*$, $\Sigma(xw) = \Sigma(yw)$ thus $xw \in \rho(L) \Longleftrightarrow yw \in \rho(L)$. Thus $\rho(L)/x = \rho(L)/y$.

$$
\blacktriangleright \kappa(\rho(L)) = 2^n = \kappa(L) \prod_i \kappa(K_i).
$$

General / Singular substitutions

We can answer the first question :

▶ For subword closed languages, $\phi_{sub}(n) \geq 2^n$ (in fact $\phi_{sub}(n) \geq n^n$).

 $\phi_\mathsf{sub} \nleq n^{\mathcal{O}(1)}$ for subword closed languages

There is still one left :

 $\kappa(L^{a \leftarrow K}) \leq \kappa(L) \kappa(K)$ for subword closed languages ?

▶ Let's focus on singular substitutions

Example of Singular substitution

Let $K = \cup (\{ab\}) + \cup (\{ba\})$ and $L = \cup (\{ab\})$

Figure: Automaton of K

$$
\rho(L) = L^{a \leftarrow K} = \mathop{\downarrow} (\{\mathtt{aab}\}) + \mathop{\downarrow} (\{\mathtt{bab}\}) = \{\mathtt{a}, \mathtt{b}\} \cdot \mathop{\downarrow} (\{\mathtt{ab}\})
$$

Figure: Automaton of $\rho(L)$

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 18 / 30 and 18 / 30

Computing quotients

Definition
\n
$$
L^{\epsilon} = \begin{cases} \emptyset, & \text{if } \epsilon \notin L, \\ {\epsilon}, & \text{otherwise.} \end{cases}
$$

Rules of computation of quotients (Brzozowski et al. [2010\)](#page-33-2) \blacktriangleright b/a = $\begin{cases} \emptyset, & \text{if } b \neq a, \\ 0, & \text{if } b \neq a, \end{cases}$ ϵ , otherwise. $(L+K)/a=L/a+K/a$ $L \cdot K)/a = (L/a) \cdot K + L^{\epsilon} \cdot (K/a)$

 J erôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 19 / 30

Computing quotients of subword closed languages

Proposition L non-empty subword closed implies $L^{\epsilon} = \{\epsilon\}$

Rules of computation of quotients for non-empty subword closed

$$
b/a = \begin{cases} \emptyset, & \text{if } b \neq a, \\ \epsilon, & \text{otherwise.} \end{cases}
$$

$$
(L+K)/a=L/a+K/a
$$

$$
(L \cdot K)/a = (L/a) \cdot K + K/a
$$

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 20 / 30 / 30

Example of quotient computation

$$
\mathsf{Take}\ \mathsf{K}=\mathcal{\downarrow}(\{\mathtt{ab}\})+\mathcal{\downarrow}(\{\mathtt{ba}\})
$$

$$
K/a = \sqrt{a b}/a + \sqrt{(b a)}/a
$$

= $[\sqrt{(a)} \cdot \sqrt{(b)}]/a + [\sqrt{(b)} \cdot \sqrt{(a)}]/a$
= $\sqrt{(a}/a \cdot \sqrt{(b)} + \sqrt{(b)})/a + \sqrt{(b)}/a \cdot \sqrt{(a)} + \sqrt{(a)}/a$
= $\{\epsilon\} \cdot \sqrt{(b)} + \emptyset + \emptyset \cdot \sqrt{(a)} + \{\epsilon\}$
= $\sqrt{(b)}$

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 21 / 30

Computing quotients of singular substitutions

Lemma

Let L, K downward closed, $a \neq b \in \Sigma$ and $\rho(L) = L^{a \leftarrow K}$

$$
\rho(L)/\epsilon = \rho(L)
$$

$$
\rho(L)/a=K/a\cdot\rho(L/a)
$$

$$
\rho(L)/b = \rho(L/b) + K/b \cdot \rho(L/a)
$$

We can efficiently compute quotients of singular substitutions.

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 22 / 30

Application of those formulas

Proposition

If $\rho(L/b)$ or $K/b \cdot \rho(L/a)$ includes the other, then for all word w

$$
\rho(L)/w = P \cdot \rho(Q)
$$

with $P \in \mathcal{R}(K) \cup \{\{\epsilon\}\}\$ and $Q \in \mathcal{R}(L)$.

If $\rho(L/b)$ or $K/b \cdot \rho(L/a)$ includes the other then we have the quadratic bound

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 23 / 30 $\frac{23}{1}$

The case of disjoint alphabets

Theorem : Disjoint alphabets

Let L, K be downward closed languages based on disjoints alphabets. Then $\big|\kappa\bigl(L^{{\mathsf{a}}\leftarrow K}\bigr)\leq \kappa(L)\kappa(K)\big|.$

Proof idea

In this case $\rho(L/b)$ or $K/b \cdot \rho(L/a)$ is equal to \emptyset .

The case of disjoint alphabets

Theorem : Disjoint alphabets

Let L, K be downward closed languages based on disjoints alphabets. Then $\big|\kappa\bigl(L^{{\mathsf{a}}\leftarrow K}\bigr)\leq \kappa(L)\kappa(K)\big|.$

Proof idea In this case $\rho(L/b)$ or $K/b \cdot \rho(L/a)$ is equal to \emptyset .

Corollary

Let L and $(\mathcal{K}_{\mathsf{a}_i})_{\mathsf{a}_i\in \mathsf{\Sigma}}$ downward closed languages such that all $|\Sigma| + 1$ languages have pairwise disjoints alphabets, then we have

$$
\kappa(L^{a_1\leftarrow K_{a_1},\dots,a_n\leftarrow K_{a_n}})\leq \kappa(L)\prod_{1\leq i\leq n}\kappa(K_{a_i})
$$

Definition SREs

Definition : SRE (Abdulla et al. [2004\)](#page-32-2)

$$
\blacktriangleright \text{ Atom}: \ \alpha = \begin{cases} a+\epsilon & \text{with } a \in \Sigma \\ B^* & \text{with } B \subseteq \Sigma \end{cases}
$$

▶ Product (of atoms) : $I = \prod_{1 \leq i \leq n} \alpha_i$ with α_i an atom.

• SRE :
$$
E = \sum_{1 \le j \le m} l_j
$$
 with l_j a product.

Theorem (Abdulla et al. [2004\)](#page-32-2)

L on a finite alphabet Σ is subword closed if and only if it can be defined by an SRE.

SREs are useful to study subword closed languages.

Jérôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 25 / 30

The case of product of atoms

Theorem : Product of atoms

Let I be a product of atoms and K a downward closed language, then $\left|\kappa(I^{a\leftarrow K})\leq \kappa(K)\kappa(I)\right|\right|$.

Proof idea

In this case $\rho(L/b)$ or $K/b \cdot \rho(L/a)$ includes the other.

Conclusion

 \triangleright The general substitution has exponential state complexity on subword closed languages.

- ▶ We found formulas to compute quotients of substitutions.
- \blacktriangleright In some cases, singular substitution has quadratic state complexity on subword closed languages.

Unsolved : $\kappa(L^{a \leftarrow K}) \leq \kappa(L) \kappa(K)$ for subword closed ?

 J erôme Guyot **[On the state complexity of subword closed languages](#page-0-0)** 27 / 30

- Answer the question : $\kappa(L^{a \leftarrow K}) \leq \kappa(L)\kappa(K)$?
- \blacktriangleright Study other operations (roots, shuffle, ...)
- ▶ Study other class of languages (prefix closed, factor closed, ...)

References I

h Abdulla et al. (2004). "Using Forward Reachability Analysis for Verification of Lossy Channel Systems". In: Formal Methods in System Design 25.1, pp. 39–65. issn: 1572-8102.

F Brzozowski (2009). "Quotient Complexity of Regular Languages". In: Proceedings 11th Int. Workshop on Descriptional Complexity of Formal Systems, DCFS 2009. Vol. 3. EPTCS, pp. 17–28.

F Brzozowski, Janusz, Galina Jirásková, and Chenglong Zou (2014). "Quotient Complexity of Closed Languages". In: Theory of Computing Systems 54.2, pp. 277–292. issn: 1433-0490.

References II

- F Brzozowski, Jirásková, and Li (2010). "Quotient Complexity of Ideal Languages". In: Proc. 9th Latin American Symp. Theoretical Informatics (LATIN 2010). Springer, pp. 208–221.
- F Hospodár (2019). "Descriptional Complexity of Power and Positive Closure on Convex Languages". In: Proc. 24th Int. Conf. Implementation and Application of Automata (CIAA 2019). Springer, pp. 158–170. ISBN: 978-3-030-23679-3.