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Introduction

q0start q1 q2 sink
a

b

b

a

a, b
a, b

This is the canonical automaton for L = {ϵ, a, b, ab}.

How large is the canonical automaton for La←−L ?

Jérôme Guyot On the state complexity of subword closed languages 3 / 30



Motivations

▶ Finite state automaton are often used as data structure

▶ Their size is important in the complexity analysis.

▶ In verification of well structure systems, some algorithms use
words ordered by the subword ordering.
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State complexity of a regular language

Definition : State complexity

The state complexity of L noted sc(L) is the number of states in
the canonical automaton for L.

▶ Easy to visualize but is not practical for formal proofs.

Definition : Left quotients and quotient complexity

▶ L/u = {v such that uv ∈ L}.
▶ R(L) is the set of all left quotients of L.

▶ κ(L) = |R(L)| is the quotient complexity of L.

Summary : κ(L) is the number of different left quotients of L.
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State complexity of a regular language II

Example

Take L = {ϵ, a, b, ab}

q0start q1 q2 sink
a

b

b

a

a, b
a, b

▶ L/ϵ = L, L/a = {ϵ, b}, L/b = {ϵ}, L/aba = ∅
▶ |R(L)| = κ(L) = 4

Theorem (Myhill, Nerode 1957) (Brzozowski 2009)

κ(L) = sc(L)
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State complexity of a function

▶ Take f : Reg −→ Reg

▶ How does κ(f (L)) relate to κ(L) ?

Definition
The state complexity of f is the function ϕf : N −→ N such that

ϕf (n) = max
κ(L)≤n

κ(f (L))

Examples

ϕ∩(n) = max
κ(L1),κ(L2)≤n

κ(L1 ∩ L2) = n2

ϕcomplement(n) = max
κ(L)≤n

κ(L̄) = n

ϕmirror(n) = max
κ(L)≤n

κ(LR) = 2n

Can we compute or at least bound ϕf ?
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Subword closed languages

Definition : Subwords
x subword of y , noted x ≼ y iff
y = u0x1u1 · · · un−1xnun with x = x1 · · · xn and ∀i ui ∈ Σ∗

Example

aab ≼ abbaaba

Definition : Subword closure
↓(L) = {x | ∃y ∈ L, x ≼ y}
L is subword closed iff ↓(L) = L.

L is subword closed if any subword of a word of L is in L.
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Subword closed languages II

q0start
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sink
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sink
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c+ϵ

b+ϵ

a+ϵ

subword closure

Automaton of ↓({ab})

q0start q1 q2 sink
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b

a

a, b
a, b
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State of the art

State complexity for subword-closed languages

(J. Brzozowski et al. 2014) (Hospodár 2019)

Operation Upper Bound Tightness requirement

L ∩ K mn − (m + n − 2) |Σ| ≥ 2

L ∪ K mn |Σ| ≥ 4

L \ K mn − (n − 1) |Σ| ≥ 4

L⊕ K mn |Σ| ≥ 2

L · K m + n − 1 |Σ| ≥ 2

L∗ (and L+) 2 |Σ| ≥ 2

LR 2n−2 + 1 |Σ| ≥ 2n

Lk k(n − 1) + 1 |Σ| ≥ 2
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Substitution of subword closed languages
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Substitutions

Definition
Let S = (K1, . . . ,Kn) a set of languages and Σ = {a1, . . . , an} an
alphabet, we define ρ such that

ρ({ϵ}) = {ϵ}

ρ({ai}) = Ki

ρ(L1 · L2) = ρ(L2) · ρ(L2)

ρ(L1 + L2) = ρ(L1) + ρ(L2)

▶ We can also write La1←−K1,...,an←−Kn .

Definition : Singular substitution

If ρ({ai}) =

{
K if ai = a

{ai} otherwise
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Questions

Proposition

If K1, . . .Kn are subword closed, then ρ(L) is subword closed.

Open problems :

ϕsub ≤ nO(1) for subword closed languages ?

κ(La←−K ) ≤ κ(L)κ(K ) for subword closed languages ?
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Toy example

Take L = {ϵ, a1, . . . , an}, and Ki = (Σ\{ai})∗.

q0start

q1

q2

qn

...

a1

a2

an

Figure: Automaton of L

q0start q1

Σ\{ai}

ai

Figure: Automaton of Ki
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Toy example II

Let us prove that κ(ρ(L)) = 2n :

▶ ρ(L) =
⋃

i Ki = words not containing all letters of Σ.

▶ ρ(L)/x = ρ(L)/y iff Σ(x) = Σ(y)

Proof
If a ∈ Σ(x) and a /∈ Σ(y), let w = ·ai ̸=aai . Then xw /∈ ρ(L) but
yw ∈ ρ(L), thus ρ(L)/x ̸= ρ(L)/y .

If Σ(x) = Σ(y) then for all w ∈ Σ∗, Σ(xw) = Σ(yw) thus
xw ∈ ρ(L)⇐⇒ yw ∈ ρ(L). Thus ρ(L)/x = ρ(L)/y .

▶ κ(ρ(L)) = 2n = κ(L)
∏

i κ(Ki ).
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General / Singular substitutions

We can answer the first question :

▶ For subword closed languages, ϕsub(n) ≥ 2n

(in fact ϕsub(n) ≥ nn).

ϕsub ≰ nO(1) for subword closed languages

There is still one left :

κ(La←−K ) ≤ κ(L)κ(K ) for subword closed languages ?

▶ Let’s focus on singular substitutions

Jérôme Guyot On the state complexity of subword closed languages 17 / 30



Example of Singular substitution

Let K = ↓({ab}) + ↓({ba}) and L = ↓({ab})

q0start

q1

q2

q3 sink

a

b

b

a

a

b

a,b
a,b

Figure: Automaton of K

ρ(L) = La←−K = ↓({aab}) + ↓({bab}) = {a, b} · ↓({ab})

q0start p1 p2 p3 sink
a, b a

b

b

a

a, b
a, b

Figure: Automaton of ρ(L)
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Computing quotients

Definition

Lϵ =

{
∅, if ϵ /∈ L ,

{ϵ}, otherwise.

Rules of computation of quotients (Brzozowski et al. 2010)

▶ b/a =

{
∅, if b ̸= a ,

ϵ, otherwise.

▶ (L+ K )/a = L/a+ K/a

▶ (L · K )/a = (L/a) · K + Lϵ · (K/a)
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Computing quotients of subword closed languages

Proposition

L non-empty subword closed implies Lϵ = {ϵ}

Rules of computation of quotients for non-empty subword
closed

b/a =

{
∅, if b ̸= a ,

ϵ, otherwise.

(L+ K )/a = L/a+ K/a

(L · K )/a = (L/a) · K + K/a

Jérôme Guyot On the state complexity of subword closed languages 20 / 30



Example of quotient computation

Take K = ↓({ab}) + ↓({ba})

K/a = ↓({ab})/a+ ↓({ba})/a
= [↓({a}) · ↓({b})]/a+ [↓({b}) · ↓({a})]/a
= ↓({a})/a · ↓({b}) + ↓({b})/a+ ↓({b})/a · ↓({a}) + ↓({a})/a
= {ϵ} · ↓({b}) + ∅+ ∅ · ↓({a}) + {ϵ}
= ↓({b})
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Computing quotients of singular substitutions

Lemma
Let L,K downward closed, a ̸= b ∈ Σ and ρ(L) = La←K

ρ(L)/ϵ = ρ(L)

ρ(L)/a = K/a · ρ(L/a)

ρ(L)/b = ρ(L/b) + K/b · ρ(L/a)

We can efficiently compute quotients of singular substitutions.

Jérôme Guyot On the state complexity of subword closed languages 22 / 30



Application of those formulas

Proposition

If ρ(L/b) or K/b · ρ(L/a) includes the other, then for all word w

ρ(L)/w = P · ρ(Q)

with P ∈ R(K ) ∪ {{ϵ}} and Q ∈ R(L).

If ρ(L/b) or K/b · ρ(L/a) includes the other then we have the
quadratic bound
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The case of disjoint alphabets

Theorem : Disjoint alphabets

Let L,K be downward closed languages based on disjoints

alphabets. Then κ
(
La←K

)
≤ κ(L)κ(K ) .

Proof idea
In this case ρ(L/b) or K/b · ρ(L/a) is equal to ∅.

Corollary

Let L and (Kai )ai∈Σ downward closed languages such that all
|Σ|+ 1 languages have pairwise disjoints alphabets, then we have

κ(La1←Ka1 ,...,an←Kan ) ≤ κ(L)
∏

1≤i≤n
κ(Kai )
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Definition SREs

Definition : SRE (Abdulla et al. 2004)

▶ Atom : α =

{
a+ ϵ with a ∈ Σ

B∗ with B ⊆ Σ

▶ Product (of atoms) : I =
∏

1≤i≤n αi with αi an atom.

▶ SRE : E =
∑

1≤j≤m Ij with Ij a product.

Theorem (Abdulla et al. 2004)

L on a finite alphabet Σ is subword closed if and only if it can be
defined by an SRE.

SREs are useful to study subword closed languages.
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The case of product of atoms

Theorem : Product of atoms
Let I be a product of atoms and K a downward closed language,

then κ(I a←K ) ≤ κ(K )κ(I ) .

Proof idea
In this case ρ(L/b) or K/b · ρ(L/a) includes the other.
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Conclusion

▶ The general substitution has exponential state complexity on
subword closed languages.

▶ We found formulas to compute quotients of substitutions.

▶ In some cases, singular substitution has quadratic state
complexity on subword closed languages.

Unsolved : κ(La←−K ) ≤ κ(L)κ(K ) for subword closed ?
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Future works

▶ Answer the question : κ(La←−K ) ≤ κ(L)κ(K )?

▶ Study other operations (roots, shuffle, ...)

▶ Study other class of languages (prefix closed, factor closed, ...)
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