### On the Addressability on CSS Codes

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

<sup>1</sup> Université Paris-Saclay, ENS Paris-Saclay, France <sup>2</sup> University of Waterloo, Canada





#### Contents

Introduction

Addressability

Splitting codes

No-go theorems

Conclusion

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### Introduction

- Quantum computers are highly susceptible to noise.
- CSS codes (Calderbank-Shor-Steane) are used and efficient.
- ▶ Goal : do some computation while the data is encoded.

 First work focusing on no-go results for the addressability problem.

#### How to do efficient addressable gates on CSS codes?

## Basics of Quantum Computing

**Qubits and Gates**  
**Qubits :** 
$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and  $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$   
**Quantum state :**  $|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$   
**Bit flip :**  $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ,  $X |0\rangle = |1\rangle$  and  $X |1\rangle = |0\rangle$ 

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup> On the Addressability on CSS Codes

#### Basics of Quantum Computing

Quantum gates are modeled by unitary operators, denoted U. Examples of common quantum gates:

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \quad CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

#### Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup> On the Addressability on CSS Codes

## Addressability

Introduction

#### Addressability

Splitting codes

No-go theorems

Conclusion

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Visualization of a code



Figure: Visualization of a code

- We call  $\frac{k}{n}$  the rate of the code.
- We write [n, k, d] for classical codes and [n, k, d] for quantum codes.
- Codes are represented by a parity check H such that C = Ker(H).

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## **Targeting Circuits**



Figure: Some circuit targeting the orange logical qubit

A circuit targets a subset *I* if it acts only on logical qubits in *I*.

## Addressability Formally I

#### Definition : Addressability

A p-qubits unitary U is addressable if for any subset of p logical qubits, there is a circuit targeting I and acting as U on it.

#### Definition : Partial Addressability

A *p*-qubits unitary *U* is partially addressable if there exists a non-empty  $I \subsetneq [\![k]\!]$  disjoint union of subsets of *p* logical qubits such that there is a circuit targeting *I* and acting as *U* on it.

## Addressability Formally II



Figure: Some circuit targeting the the orange logical qubit

- See U as a function on colors sending orange to red, blue to purple and green to pink.
- U is partially addressable with  $I = \{\text{orange}\}$  on this code.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Addressability Formally III



Figure: Addressability

- ▶ We have targeting circuits acting as U on any logical qubit.
- ► *U* is addressable on this code.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

On hypergraph product codes :

- [QWV23] obtains partial addressability for H, P, CZ, CNOT gates using state injection.
- [PB24] obtains addressability for all Clifford gates, but the process does not preserve the distance of the code.

## P-addressability I

U is P-addressable iff for each subset of logical there is a targeting circuit acting as U, satisfying P.

Same idea for *P*-partial addressability

#### Example

P can be

- depth of circuit is less than r.
- circuit only uses gates in  $\{I, X, Z, Y, H, P\}$ .

In this work we use the following properties :

- ► Circuit only uses gates in {*I*, *X*, *Z*, *Y*, *H*, *P*} → single qubit Clifford addressability.
- Circuit implements a permutation of physical qubits

   → permutation addressability.

## Splitting codes

Introduction

**Addressability** 

Splitting codes

No-go theorems

Conclusion

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Visualization of a splitting code



Figure: Visualization of a splitting code

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Visualization of a non-splitting code



Figure: Visualization of a non-splitting code

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### Visualization of a code



Figure: Visualization of a code

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### Visualization of a code



Figure: Visualization of a code

This is a splitting code.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Formalization of splitting codes

#### Definition

A splits if up to permutation of qubits A has a basis of the form  $\begin{pmatrix}
A_1 & 0 \\
0 & A_2
\end{pmatrix}$ 

# Definition C = CSS(A, B) splits if A and B split on the same support.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Example of splitting codes



The code splits on the first 2 qubits and on the last 5 qubits.

#### Proposition

There is a  $\mathcal{O}(n^2)$  time algorithm computing the splitting of a code.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

Why consider splitting and non-splitting codes

- Any code either is non-splitting or splits into several non-splitting subcodes.
- A gate U is addressable on a code iff it is addressable on the subcodes.
- Studying addressability on non-splitting codes is enough.

## No-go theorems

Introduction

**Addressability** 

Splitting codes

No-go theorems

Conclusion

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### No-go theorems

#### Theorem

*H*, *HP*, *PH* and *CNOT* gates are not single qubit Clifford partially addressable on non-splitting CSS codes.

#### Theorem

*H*, *HP*, *PH* and *CNOT* gates are not single qubit Clifford addressable on any  $[\![n, k, d]\!]$  CSS code with rate greater then  $\min(\frac{1}{2d-1}, \frac{1}{7})$ .

#### Theorem

SWAP and CNOT are not permutation addressable on families of CSS codes with asymptotical rate greater than  $\frac{1}{3}$ .

#### Conclusion

We defined a framework for the study of addressability.

- We described the notion of splitting and its link with addressability.
- We proved no-go theorems on the addressability on CSS codes.

Up to our knowledge, first work providing no-go theorems for addressability.

### Future Work

- Study bounded depth addressability .
- Consider circuits allowing more gates.
- Find positives results on addressability.

#### References I

[PB24]

[4] Adway Patra and Alexander Barg. Targeted Clifford logical gates for hypergraph product codes. 2024. arXiv: 2411.17050 [quant-ph]. URL: https://arxiv.org/abs/2411.17050.

[QWV23] Armanda O. Quintavalle, Paul Webster, and Michael Vasmer. "Partitioning qubits in hypergraph product codes to implement logical gates". In: *Quantum* 7 (Oct. 2023), p. 1153. ISSN: 2521-327X. DOI: 10.22331/q-2023-10-24-1153. URL: https://doi.org/10.22331/q-2023-10-24-1153.

### Appendix

Appendix Basics of Quantum Computing Additional Background Additional results

## Basics of Quantum Computing

#### Entanglement:

- Key benefit of quantum mechanics.
- Example of an entangled state:

$$|\Psi
angle = rac{1}{\sqrt{2}}(|00
angle + |11
angle)$$

- Measurement of the first qubit gives equal probability for 0 and 1, but the second qubit will be the same as the first.
- Non-entangled states are separable and described as tensor products:

$$|\Psi_A
angle\otimes|\Psi_B
angle$$

## Shor Code Example $[\![9, 1, 3]\!]$

- Encodes one logical qubit into nine physical qubits.
- Protects against arbitrary single-qubit errors.



Figure: Shor code circuit

Source: docs.yaoquantum.org

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Stabilizers groups

▶ For 
$$a \in \mathbb{F}_2^n$$
,  $X^a = \bigotimes_{a_i=1} X_i$ , same for Z.

Example  $X \otimes Z \otimes I \otimes X = X^{1001}Z^{0100}$ 

#### Definition : Stabilizers

A stabilizer group S is an abelian group such that for all  $s \in S$ ,  $s = \pm X^a Z^b$ .

Summary : We can write stabilizers as  $s = \pm X^a Z^b$ 

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### Example of Stabilizer Code

A stabilizer group defines a quantum code (stabilizer code):

► Consider the [7, 1, 3] Steane code.

Stabilizers generators:

$$s_{1} = ZIZIZIZ = Z^{1010101}$$

$$s_{2} = IZZIIZZ = Z^{0110011}$$

$$s_{3} = IIZZZZI = Z^{0011110}$$

$$s_{4} = XIXIXIX = X^{1010101}$$

$$s_{5} = IXXIIXX = X^{0110011}$$

$$s_{6} = IIXXXXI = X^{0011110}$$

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

### CSS Codes

- CSS codes are made from two classical linear codes C<sub>X</sub>, C<sub>Z</sub> with C<sup>⊥</sup><sub>Z</sub> ⊆ C<sub>X</sub> with parity checks H<sub>X</sub>, H<sub>Z</sub>.
- Let  $A = \operatorname{span}(H_X)$  and  $B = \operatorname{span}(H_Z)$  (the space of rows).

Stabilizers are defined as:

$$S_X = \{X^a \mid a \in A\}$$
$$S_Z = \{Z^b \mid b \in B\}$$

We write C = CSS(A, B)

Stabilizers of CSS codes are of the form  $X^a, Z^b$ 

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## CSS Encoding Example

► The Steane code is a CSS code

$$H_X = H_Z = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Equations from validity

| Gate                                          | CSS(A,B)                    | if $A = B$             |
|-----------------------------------------------|-----------------------------|------------------------|
| $H^h$                                         | $A \cap h \subseteq A$      | $A \cap h \subseteq A$ |
|                                               | $B \cap h \subseteq B$      |                        |
| P <sup>h</sup>                                | $A \cap h \subseteq B$      | $A \cap h \subseteq A$ |
| $CNOT^{I\longrightarrow J}$ in the same block | $\pi_R(A\cap I)\subseteq A$ | $A \cap I \subseteq A$ |
|                                               | $\pi_R(B\cap J)\subseteq B$ | $A \cap J \subseteq A$ |

Table: Inclusions if those gates are valid logicals

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Visualization of automorphisms



#### Figure: Visualization of automorphisms

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### automorphisms

#### Definition

 $\tau_n$  is a valid automorphism of classical code C with parity check G iff there exists  $U \in Gl_r(\mathbb{F}_2)$  such that UG = GP where P is the permutation matrix of  $\tau_n$ .

## Code Automorphisms

#### Definition : Classical automorphisms

A permutation P is an automorphism of a classical code C iff permuting bits using P acts as a change of basis.

#### Definition : CSS automorphisms

A permutation is an automorphism of  $CSS(C_1, C_2)$  iff it is an automorphism for both classical codes.

Automorphisms are permutations of columns acting as a change of basis.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

#### Automorphism Example

• Take 
$$G = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$
 and  $P$  permuting qubits 1 and 2  

$$GP = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} G = UG$$

 $\triangleright$  P is an automorphism of the classical code of parity check G.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup> On the Addressability on CSS Codes

## Addressability with automorphisms

#### Proposition

For a classical code [n, k, d] there are less than  $\frac{n!}{k!}$  automorphisms.

#### Proposition

For a CSS code  $CSS(\mathcal{C}_1, \mathcal{C}_2)$  there are less than  $\frac{n!}{(\rho'n)!}$  automorphisms, where  $\rho' = \max(\rho_1, \rho_2)$ .

Let  $C = CSS(C_1, C_2)$  have rate  $\rho$ , and take  $\rho' = \max(\rho_1, \rho_2)$ ,

$$|\mathsf{f} \; \frac{n!}{(\rho'n)!} < (\rho n)!$$

there are less automorphisms than permutations of logical qubits.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## Addressability with automorphisms

## Lemma For all ho, ho' > 0 such that ho + ho' > 1

$$\exists n_0 \in \mathbb{N}, \ \forall n > n_0, \ \frac{n!}{(\rho' n)!} < (\rho n)!$$

#### Theorem

Let  $(\mathcal{C}_n)_{n\in\mathbb{N}}$  a family of CSS codes and  $n_0 \in \mathbb{N}$  such that  $\forall n > n_0, \ \rho_n > \frac{1}{3}$ . Then this family of codes does not have all addressable permutations of logical qubits implemented by permutations of physical qubits only.

## Visualization of CNOTs



#### Figure: Visualization of CNOTs

#### Example

Consider a code with 7 qubits and the unitary

 $\operatorname{CNOT}_{I \to J} = \operatorname{CNOT}(1,1) \otimes \operatorname{CNOT}(2,3) \otimes \operatorname{CNOT}(3,4) \otimes \operatorname{CNOT}(4,2) \otimes \operatorname{CNOT}(5,6)$ 



• 
$$I = \{1, 2, 3, 4, 5\}$$
 and  $J = \{1, 2, 3, 4, 6\}$ .

• 
$$\pi_I = (0)(1)(2,3,4)(5,6)$$
 and  $\pi_J = \pi_I^{-1}$ 

• orbits of  $\pi_I$  in I: (1) and (2,3,4)

Assume  $a_0 = 1101001 \in A$  and take  $a_{i+1} = \pi_I(a_i \cap I)$ 

For all 
$$i, a_i \in A$$

$$\bullet \ a_3 = 0101000 = a_0 \cap \{1, 2, 3, 4\}$$

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>

## CNOT between identical blocks

- Let CNOT<sup>I→J</sup> = ⊗<sub>(i,j)∈R</sub> CNOT(i,j) where I, J are the control/target qubits.
- $\blacktriangleright \pi_I$  defined such that

$$\begin{cases} \text{If } i \in I, \pi_I(i) = j \text{ such that } (i,j) \in R \\ \text{If } j \in J \setminus I, \pi_I(j) = i \in I \setminus J \\ \text{Else } x \notin I \cup J, \pi_I(x) = x \end{cases}$$
(1)

• Take 
$$\pi_J = \pi_I^{-1}$$

#### Theorem

If  $CNOT^{I \longrightarrow J}$  is a valid logical on CSS(A, B), let *h* be the union of the support of the orbits of  $\pi_I$  contained in *I*, the code splits on *h*.

#### Some implementations using CNOTs only work on splitting codes.

Jérôme Guyot<sup>1</sup> Samuel Jaques<sup>2</sup>