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Introduction

▶ Quantum computers are highly susceptible to noise.

▶ CSS codes (Calderbank-Shor-Steane) are used and efficient.

▶ Goal : do some computation while the data is encoded.

▶ First work focusing on no-go results for the addressability
problem.

How to do efficient addressable gates on CSS codes?
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Basics of Quantum Computing

▶ Qubits and Gates

▶ Qubits : |0⟩ =

1

0

 and |1⟩ =

0

1


▶ Quantum state : |Ψ⟩ = α |0⟩+ β |1⟩

▶ Bit flip : X =

0 1

1 0

 , X |0⟩ = |1⟩ and X |1⟩ = |0⟩
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Basics of Quantum Computing

▶ Quantum gates are modeled by unitary operators, denoted U.

▶ Examples of common quantum gates:
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Visualization of a code

Figure: Visualization of a code

▶ We call k
n
the rate of the code.

▶ We write [n, k, d ] for classical codes and Jn, k, dK for quantum codes.

▶ Codes are represented by a parity check H such that C = Ker(H).

Jérôme Guyot1 Samuel Jaques2 On the Addressability on CSS Codes 7 / 26



Targeting Circuits

Figure: Some circuit targeting the orange logical qubit

▶ A circuit targets a subset I if it acts only on logical qubits in I .
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Addressability Formally I

Definition : Addressability

A p-qubits unitary U is addressable if for any subset of p logical
qubits, there is a circuit targeting I and acting as U on it.

Definition : Partial Addressability

A p-qubits unitary U is partially addressable if there exists a
non-empty I ⊊ JkK disjoint union of subsets of p logical qubits
such that there is a circuit targeting I and acting as U on it.
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Addressability Formally II

Figure: Some circuit targeting the the orange logical qubit

▶ See U as a function on colors sending orange to red, blue to
purple and green to pink.

▶ U is partially addressable with I = {orange} on this code.
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Addressability Formally III

Figure: Addressability

▶ We have targeting circuits acting as U on any logical qubit.

▶ U is addressable on this code.
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Previous works

On hypergraph product codes :

▶ [QWV23] obtains partial addressability for H,P,CZ ,CNOT
gates using state injection.

▶ [PB24] obtains addressability for all Clifford gates, but the
process does not preserve the distance of the code.
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P-addressability I

▶ U is P-addressable iff for each subset of logical there is a
targeting circuit acting as U, satisfying P.

▶ Same idea for P-partial addressability

Example

P can be

▶ depth of circuit is less than r .

▶ circuit only uses gates in {I ,X ,Z ,Y ,H,P}.
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P-addressability II

In this work we use the following properties :

▶ Circuit only uses gates in {I ,X ,Z ,Y ,H,P}
−→ single qubit Clifford addressability.

▶ Circuit implements a permutation of physical qubits
−→ permutation addressability.
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Visualization of a splitting code

Figure: Visualization of a splitting code
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Visualization of a non-splitting code

Figure: Visualization of a non-splitting code
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Visualization of a code

Figure: Visualization of a code

▶ This is a splitting code.
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Visualization of a code

Figure: Visualization of a code

▶ This is a splitting code.
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Formalization of splitting codes

Definition
A splits if up to permutation of qubits A has a basis of the formA1 0

0 A2

.

Definition
C = CSS(A,B) splits if A and B split on the same support.
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Example of splitting codes

Example

A =



1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 1


and B =



1 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1


▶ The code splits on the first 2 qubits and on the last 5 qubits.

Proposition

There is a O(n2) time algorithm computing the splitting of a code.
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Why consider splitting and non-splitting codes

▶ Any code either is non-splitting or splits into several
non-splitting subcodes.

▶ A gate U is addressable on a code iff it is addressable on the
subcodes.

▶ Studying addressability on non-splitting codes is enough.
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No-go theorems

Theorem
H, HP, PH and CNOT gates are not single qubit Clifford partially
addressable on non-splitting CSS codes.

Theorem
H, HP, PH and CNOT gates are not single qubit Clifford
addressable on any Jn, k , dK CSS code with rate greater then
min( 1

2d−1 ,
1
7).

Theorem
SWAP and CNOT are not permutation addressable on families of
CSS codes with asymptotical rate greater than 1

3 .
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Conclusion

▶ We defined a framework for the study of addressability.

▶ We described the notion of splitting and its link with
addressability.

▶ We proved no-go theorems on the addressability on CSS
codes.

Up to our knowledge,
first work providing no-go theorems for addressability.
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Future Work

▶ Study bounded depth addressability .

▶ Consider circuits allowing more gates.

▶ Find positives results on addressability.
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Basics of Quantum Computing

▶ Entanglement:
▶ Key benefit of quantum mechanics.
▶ Example of an entangled state:

|Ψ⟩ = 1√
2
(|00⟩+ |11⟩)

▶ Measurement of the first qubit gives equal probability for 0
and 1, but the second qubit will be the same as the first.

▶ Non-entangled states are separable and described as tensor
products:

|ΨA⟩ ⊗ |ΨB⟩
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Shor Code Example J9, 1, 3K
▶ Encodes one logical qubit into nine physical qubits.

▶ Protects against arbitrary single-qubit errors.

Logical |0⟩L = |000000000⟩+ |111111111⟩
Logical |1⟩L = |000000000⟩ − |111111111⟩

Figure: Shor code circuit

Source: docs.yaoquantum.org
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Stabilizers groups

▶ For a ∈ Fn
2, X

a =
⊗

ai=1 Xi , same for Z .

Example

X ⊗ Z ⊗ I ⊗ X = X 1001Z 0100

Definition : Stabilizers
A stabilizer group S is an abelian group such that for all s ∈ S ,
s = ±X aZb.

Summary : We can write stabilizers as s = ±X aZb
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Example of Stabilizer Code

A stabilizer group defines a quantum code (stabilizer code):

▶ Consider the J7, 1, 3K Steane code.

▶ Stabilizers generators:

s1 = ZIZIZIZ = Z 1010101

s2 = IZZIIZZ = Z 0110011

s3 = IIZZZZI = Z 0011110

s4 = XIXIXIX = X 1010101

s5 = IXXIIXX = X 0110011

s6 = IIXXXXI = X 0011110
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CSS Codes

▶ CSS codes are made from two classical linear codes CX ,CZ

with C⊥
Z ⊆ CX with parity checks HX ,HZ .

▶ Let A = span(HX ) and B = span(HZ ) (the space of rows).

▶ Stabilizers are defined as:

SX = {X a | a ∈ A}
SZ = {Zb | b ∈ B}

We write C = CSS(A,B)

Stabilizers of CSS codes are of the form X a,Zb
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CSS Encoding Example

▶ The Steane code is a CSS code

HX = HZ =


1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1


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Equations from validity

Gate CSS(A,B) if A = B

Hh
A ∩ h ⊆ A

B ∩ h ⊆ B

A ∩ h ⊆ A

Ph A ∩ h ⊆ B A ∩ h ⊆ A

CNOT I−→J in the same block
πR(A ∩ I ) ⊆ A

πR(B ∩ J) ⊆ B

A ∩ I ⊆ A

A ∩ J ⊆ A

Table: Inclusions if those gates are valid logicals
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Visualization of automorphisms

Figure: Visualization of automorphisms
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automorphisms

Definition
τn is a valid automorphism of classical code C with parity check G
iff there exists U ∈ Glr (F2) such that UG = GP where P is the
permutation matrix of τn.
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Code Automorphisms

Definition : Classical automorphisms

A permutation P is an automorphism of a classical code C iff
permuting bits using P acts as a change of basis.

Definition : CSS automorphisms

A permutation is an automorphism of CSS(C1, C2) iff it is an
automorphism for both classical codes.

Automorphisms are permutations of columns acting as a change of
basis.
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Automorphism Example

▶ Take G =

1 1 0

0 1 1

 and P permuting qubits 1 and 2

GP =

1 1 0

1 0 1

 =

1 0

1 1

G = UG

▶ P is an automorphism of the classical code of parity check G .

Jérôme Guyot1 Samuel Jaques2 On the Addressability on CSS Codes 38 / 26



Addressability with automorphisms

Proposition

For a classical code [n, k , d ] there are less than n!
k! automorphisms.

Proposition

For a CSS code CSS(C1, C2) there are less than n!
(ρ′n)!

automorphisms, where ρ′ = max(ρ1, ρ2).

Let C = CSS(C1, C2) have rate ρ, and take ρ′ = max(ρ1, ρ2),

If
n!

(ρ′n)!
< (ρn)!

there are less automorphisms than permutations of logical qubits.
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Addressability with automorphisms

Lemma
For all ρ, ρ′ > 0 such that ρ+ ρ′ > 1

∃n0 ∈ N, ∀n > n0,
n!

(ρ′n)!
< (ρn)!

Theorem
Let (Cn)n∈N a family of CSS codes and n0 ∈ N such that
∀ n > n0, ρn > 1

3 . Then this family of codes does not have all
addressable permutations of logical qubits implemented by
permutations of physical qubits only.
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Visualization of CNOTs

Figure: Visualization of CNOTs
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Example

Consider a code with 7 qubits and the unitary

CNOTI−→J = CNOT(1, 1)⊗CNOT(2, 3)⊗CNOT(3, 4)⊗CNOT(4, 2)⊗CNOT(5, 6)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

▶ I = {1, 2, 3, 4, 5} and J = {1, 2, 3, 4, 6}.
▶ πI = (0)(1)(2, 3, 4)(5, 6) and πJ = π−1

I .

▶ orbits of πI in I : (1) and (2, 3, 4)

Assume a0 = 1101001 ∈ A and take ai+1 = πI (ai ∩ I )

▶ For all i , ai ∈ A

▶ a3 = 0101000 = a0 ∩ {1, 2, 3, 4}
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CNOT between identical blocks

▶ Let CNOT I−→J =
⊗

(i ,j)∈R CNOT (i , j) where I , J are the
control/target qubits.

▶ πI defined such that
If i ∈ I , πI (i) = j such that (i , j) ∈ R

If j ∈ J\I , πI (j) = i ∈ I\J
Else x /∈ I ∪ J, πI (x) = x

(1)

▶ Take πJ = π−1
I

Theorem
If CNOT I−→J is a valid logical on CSS(A,B), let h be the union of
the support of the orbits of πI contained in I , the code splits on h.

Some implementations using CNOTs only work on splitting codes.
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