
On state complexity for subword-closed languages

Jérôme Guyot1

DER Informatique, Univ. Paris-Saclay, ENS Paris-Saclay, Gif-sur-Yvette, France
jerome.guyot@ens-paris-saclay.fr

Abstract. This paper investigates the state complexities of subword-closed and
superword-closed languages, comparing them to regular languages. We focus on
the square root operator and the substitution operator. We establish an exponential
lower bound for superword-closed languages for the n-th root. For subword-closed
languages we analyze in detail a specific instance of the square root problem for
which a quadratic complexity is proven. For the substitution operator, we show
an exponential lower bound for the general substitution. We then find some con-
ditions for which we prove a quadratic upper bound.

Introduction

State complexity. The number of states of the canonical automaton recognizing a reg-
ular language L is known as its state complexity, denoted �(L). It is a common measure
of the complexity of regular languages[6]. Finite state automaton are often used as data
structure: the size of the automata thus becomes an important parameter in the complex-
ity analysis of some algorithms.

For an operation or a function f on regular languages, the natural question would be
what is the state complexity of f (L) when L has state complexity n ? This leads to the
definition of the state complexity of f as the function �f ∶ ℕ → ℕ such that �f (n) is
the maximum state complexity of f (L) with L having state complexity at most n. This
notion can be extended to functions having multiple arguments, for example the state
complexity of intersection would be given by �∩(n1, n2). State complexity of regular
languages already has a rich literature and the recent survey [12] describes the known
results for a wide range of operations and classes of languages. As it can be difficult to
find the exact complexity of some f (L) or to give a formula for the function �f , the
goal is often to obtain bounds on the complexity of f (L) and on �f . This induces a
classification of the operations on regular languages and finite automata based on the
growth of �f .

State complexity of subregular classes. It is often interesting to measure the state
complexity of a function f when we restrict its argument to a subregular class. As some
applications only focus on a subregular class of automata it becomes natural to study
the state complexity on this restricted domain. For example, computational linguistic
uses automata to encode lexicons that are always finite languages: they are considered
in [10] while their complement, cofinite languages, are considered in [3]. Linguistics
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is also interested in locally-testable languages [16], and other areas like genomics or
databases or text processing have their own subclasses of interest.

The study of state complexity restricted to such subclasses has recently become quite
active after Brzozowski et al. initiated a systematic study of state complexity on various
fundamental classes of subregular languages [9,5,7,8].

Subword-closed and superword-closed languages. In the context of computer-aided
verification, several algorithms for program verification uses well-quasi-ordered data
domains [11,1,4] and in particular, using Higman’s lemma, words ordered by the sub-
word order. These algorithms have to compute with subword-closed and superword-
closed languages.

Superword and subword closed languages have other terminologies that depend on
the characterization. We follow [20]. Some authors use “subword” for a factor, and use
“scattered subword” for what we call a subword. In [8] superword-closed languages are
called all-sided ideals when seeing them as shuffle ideals. The state complexity of super-
word and subword closed languages has not been analyzed extensively, a more studied
problem is to obtain the subword and superword closure of a language and study its state
complexity [15,13,14,19,17].

Brzozowski et al. considered subword-closed languages in [7] and superword-closed
languages in [8]: they only consider the most usual operations: boolean combinations,
concatenation, iteration and mirror. However, there exist other interesting operations to
consider as they also preserve the subword/superword closedness such as the shuffle.

Our contribution. We are interested in completing the picture and consider the state
complexity on other operations on subword-closed or superword-closed languages.

In the following sections, we focus on two operators the ntℎ-root operators and the
substitution operator. For the root operators, we show that they have exponential com-
plexity even when restricted to superword-closed languages. For the subword closed
languages, when L is the language of subwords of a word w it seems that there is a
quadratic upper bound, we do not know if it extends in the general case of subword
closed languages. For the substitution operator, we show an exponential lower bound
for the general substitution. In the case where only one letter is substituted, we show
a quadratic upper bound when L and K are subword closed languages and based on
disjoint alphabets and conjecture a quadratic upper bound when L and K are subword
closed languages. Finally we proved a quadratic upper bound when L is directed and K
is downward closed ( without any hypothesis on the alphabet).

This work contributes to understanding the state complexities of subregular lan-
guages. It was done in the context of an initiation to research project at ENS Paris-
Saclay. I warmly thank Philippe Schnoebelen for his valuable help and dedication to the
project. I also thank Maelle Gautrin and Simon Corbard for initiating the research on
the substitution operator.
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1 Main results
We say that a word x is a subword of y, written x ≼ y, when it is a subsequence. For
example JMIT ≼ JUMPIEST. For a language L ⊆ Σ∗, we let ↓(L) = {x ∈ Σ∗ | ∃ y ∈
L, x ≼ y} denote the downward closure of L. L is downward-closed if and only if
↓(L) = L. We further let ↑(L) = {x ∈ Σ∗ | ∃ y ∈ L, y ≼ x} denote the upward closure
of L. L is upward-closed if and only if ↑(L) = L.

k-th root. For k ∈ ℕ and a language L, the kth root of L is the set k
√

L = {x | xk ∈ L}.
This operation can be seen as the inverse of concatenation k times. It is well known that
k
√

L is regular when L is [18]. Further note that k
√

L is upward-closed or downward-
closed when L is.
Theorem 1. For any k ≥ 2, the state complexity of the kth root operator is exponential
even when restricted to upward-closed languages.

For downward closed languages, we still do not know if kth root has exponential
state complexity. We describe an example showing why the situation is more complex
than for upward closed.

Substitution. WewriteLa←K,b←K′,… for the result of substituting the languagesK,K ′,…
for every occurrence of a, b,… in any word of L. It is well known that substitutions pre-
serve regularity. Observe thatLa←K,b←K′,… is downward-closed whenL,K,K ′,… are.
For example take L = {aa, ba} and K = {c, bc} and then

La←K,b←L = {cc, bcc, cbc, bcbc, aac, aabc, bac, babc}

Theorem 2. The state complexity of substitution is exponential even when restricted to
downward-closed languages.

In the case La←K where only one letter is substituted, we do not know if state com-
plexity remains exponential. However, under some additional conditions we can prove
a quadratic upper bound.
Theorem 3. Let L,K be downward closed languages based on disjoints alphabets.
Then �(La←K ) ≤ �(L)�(K).
Definition 1 (SREs,[2]).

An atom is a (particular case of) regular expression � that is either a letter-atom
a + � with a ∈ Σ, or a star-atom B∗ with B ⊆ Σ.

A product of atoms (or product) I is a finite concatenation of atoms : I =
∏

1≤i≤n �i
where �i is an atom. It is a regular expression and the empty product denotes �.

An SRE E is a finite sum of products : E =
∑

1≤j≤m Ij . The empty sum denotes ∅.
We denote by JEK the language described by E. The SREs form a subclass of regular
expressions.
Theorem 4 ([2]). A language L on a finite alphabet Σ is downward closed if and only
if it can be defined by an SRE.
Theorem 5. Let I be a product of atoms and K a downward closed language, then
�(Ia←K ) ≤ �(K)�(I).
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