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Introduction

General context

Bit commitment is a fundamental primitive introduced by [2] and used to create many more complex cryp-
tographic primitives. In particular, bit commitment is ubiquitous in multiparty computation. Informally it
is a two phase process between two parties, where one places a secret inside a locked box and gives it to the
other party. The receiver cannot open the box and learn the secret, it is said to be hiding. In a later stage,
the first party sends the key of the lock to the receiver who can now open the box and learn the secret.
Furthermore, while giving the key, the sender cannot use this opportunity to somehow change the secret,
that is the binding property.

Bit commitment is also primordial in zero-knowledge proofs, for example [1] uses a special kind of bit
commitment to build an oblivious transfer protocol, which applied to the result of [8] generates an oblivious
circuit evaluation. Finally, using bit commitment, [1] shows that any multi-prover interactive proof can be
made zero-knowledge, thus showing the potential of bit commitment.

However, one cannot hope for unconditional hiding and unconditional binding in a bit commitment, this
can be proven easily in the classical setting and has been proven in the quantum setting independently by
[9,10]. It thus brings the question of under which assumption can there be bit commitment. One way to
escape the impossibility result is to reduce the power of the parties, either the committer or the receiver. In
this work, and similarly to [1,5] we consider systems where the committer is split into two sub-parties that
cannot communicate. This makes it fall into the world of multiparty interactive systems, and used in [1] to
achieve zero-knowledge for multi-prover interactive proofs.

Now let us focus on the setting where the committer is actually composed of two provers, one might
wonder what is the minimal assumption such that bit commitment exists. By this we mean, what amount
of correlation is allowed between the two provers ? In [1] the commitment scheme is classical and is binding
against classical adversaries. Furthermore, [4] proves that a variation of this commitment scheme is not bind-
ing against quantum adversaries, while this exact bit commitment is binding against quantum adversaries
but not against no-signaling adversaries.

The notion of no-signaling appeared in the context of quantum mechanics [12,7] and more precisely Bell
inequalities. Intuitively adversaries are no-signaling if they do not communicate with each other. In this
sense, since we restricted to schemes where the committer is made of two sub-parties, showing security
against no-signaling adversaries would result in the maximal level of security.

While this would not be unconditionally secure, assuming that nothing can signal faster than light,
one could put the two sub-parties of the committer sufficiently far to ensure they cannot signal during the
execution of the protocol. Under such no-signaling security, this practical implementation of bit commitment
would be secure, under the standard assumption that nothing can travel faster than light.

Research problem

The research for no-signaling secure bit commitment also has many more applications. It is mainly linked
with the work of [6] which creates a bridge between delegation schemes and multi-prover interactive proof
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that are no-signaling secure. In their work, they show that the security of their delegation scheme, can be
reduced to the no-signaling security of some multi-prover interactive proof system. Thus, the existence of a
no-signaling secure bit commitment would allow the creation of more complex no-signaling secure crypto-
graphic primitives, which could lead to a zero-knowledge version of their delegation scheme.

The work of [5] presents the first bit commitment which is binding against no-signaling adversaries.
However this protocol does not offer selective opening. More precisely, if one commits more than one bit, using
their protocol it is impossible to guarantee that a malicious receiver opens only one bit. Selective opening is
a crucial property when using bit commitment to construct other schemes, which makes it impossible to use
their bit commitment in this case. Thus, in this work, we aim at creating a bit commitment protocol which
would be selective opening, with the guarantee that the receiver can open only one commit of its choosing,
hiding and binding against no-signaling adversaries.

Contribution

In this work, we introduced a new object called interpretation games, which appears naturally when consid-
ering variants of the protocol from [5]. We explained how one could build a bit commitment protocol whose
binding relies on the no-signaling value of the underlying interpretation game. Finally, we linked the desired
properties of the commitment with properties on the interpretation and study to what extent such an object
existed. Unfortunately, we proved that one cannot hope for an interpretation which would provide a bit
commitment with perfect hiding and statistical binding against no-signaling adversaries. More generally, we
prove that there is no bit commitment with these properties when restricting to 3 provers, thus generalizing
the impossibility result of [5].

We want to highlight that while interpretation games are not useful for this type of bit commitment
protocol, interpretation game may be of use in other context, and thus are interesting on their own.

We also explore alternative protocols for a bit commitment protocol, and using linear programming we
test those ideas experimentally and observe that none of them are binding. This, combined with the new
impossibility result (Theorem 2), raise the question of the existence of selective opening bit commitment
which are perfectly hiding and statistically binding against no-signaling adversaries.

Arguments supporting its validity

As explained, the first approach, using interpretation games, was not successful. However, the idea introduced
: the interpretation game is interesting on its own. While we cannot provide any concrete argument for the
existence or the impossibility of such a bit commitment, we provide an extensive study in the case of
interpretation games which gives some intuition about why having both hiding and binding is difficult.
We also experimentally test other implementations using linear programming and could not obtain both
hiding and binding simultaneously. Finally, the impossibility result of such a bit commitment with 3 provers
generalizes previous impossibility results and raises the question of the existence of such bit commitments.

Summary and future work

In future work, one might want to study the existence of such a bit commitment and try to prove its
impossibility. It would be very interesting if such a bit commitment exists, as it would open the way for an
interesting development which would be to work on a no-signaling version of [1]. On the other hand, if it is
indeed impossible, it would be very interesting to understand the exact threshold of correlation after which
bit commitment with selective opening is impossible.

1 Preliminaries

1.1 Probability distributions

Definition 1. Let X be a finite non-empty set, a function p : X 7→ R is a probability distribution if∑
x∈X p(x) = 1 and for all x ∈ X , p(x) ≥ 0.

2



J. Guyot

In this work we will only consider discrete probability distributions. Furthermore, for any subset E ⊆
X , p(E) =

∑
x∈E p(x). A probability distribution p is said to be bipartite if it is of the form X×Y 7→ R. In this

case, we write p((x, y)) as p(x, y) and as usually, we write p(x = y) instead of p({(x, y) ∈ X ×Y|x = y}). In
the case of bipartite distributions, taking w to be an element of X (and not a random variable), the marginals
are given by p(x = w) =

∑
y∈Y p(w, y) and p(y = w) =

∑
x∈X p(x,w). Furthermore, this naturally extends

to multipartite distributions. A conditional probability distribution is a function p : X × A 7→ R such that
for any a0 ∈ A the function p(x|a = a0) is a probability distribution. This also extends to multipartite
distributions : from p(x, y|a, b) we can naturally define p(x|a, b). However p(x|a) is not well defined unless
p(x|a, b) is independent of b or p(b|a) is defined. In this sense, we will often write p(x|a) = p(x|a, b) to express
that p(x|a, b) is independent of b.

1.2 Bit commitment

The idea behind the bit commitment protocol is that some party A commits to a value, one can see this as
”putting a secret in a box” such that another party B cannot guess the value : ”cannot open/see through
the box”, and A cannot modify it anymore. Once it is time to open, A sends a key to B, who opens the
box, and learns the secret. This is in particular very useful in multiparty computation or to make protocol
zero-knowledge.

Definition 2. (Bit commitment)
A bit commitment scheme is defined by three algorithms :

– Setup(1λ) which given the security parameter λ returns the parameter of the scheme.
– Commit(b, r) which given a bit b and a randomness r outputs a commit c of b and an opening value t.
– Verify(c, t, b) open the commit using t and checks that it is consistent with b.

It is required to satisfy two properties :

Hiding : Calling Db(c) the distribution of c, the scheme is perfectly (resp statistically) hiding if D0(c) =
D1(c) (resp |D0(c) = D1(c)| is negligible).

Binding : Calling Prob(Cheat) the probability that the verifier accepts when c, t open to both b and 1 − b.
We say that the scheme is perfectly (resp statistically) binding if Prob(Cheat) = 0 (resp Prob(Cheat) is
negligible).

Remark 1. There is also a notion of soundness to a commitment scheme [5]. A commitment scheme is said
to be α-sound if the honest opening of a committed value succeeds with probability at least α1. A perfectly
sound scheme would thus have α = 1.

Alternatively, one could represent a one round bit commitment as a two rounds interactive system Fig. 1.
As such, a commitment scheme can be represented using the different probability distributions involved in
the interactive system[5].

Definition 3. (Bit commitment as a bipartite protocol)
A one round commitment scheme consists of a probability distribution p(s), two conditional distributions

p0(c, t|s) and p1(c, t|s) and an acceptation predicate Acc(c, t|s, b).

In this framework, p(s) represents the question of A which allows to commit on b, this commitment is
represented by c and t is the opening. Here p0(c, t|s) and p1(c, t|s) represent the behavior of the honest
committer. The probability that honest committer opens to b when committed on b is given by

Prob(Acc|b) =
∑
s

∑
c

∑
t

pb(c, t|s)Acc(c, t|s, b) .

1 In a way, the ”soundness” of a commitment scheme is very similar to the completeness of an interactive proof.
While the binding would be closer to the soundness of the interactive proof.
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A B
Knows

b

s

[b] = c

t

Output: b

Commit Phase

Open Phase

Fig. 1: Diagram of bit commitment

Remark 2. In this work, the committer (B) will be composed of 2 or more sub-parties that cannot signal to
each other during the protocol. In this setting, the commitment scheme will be said to be classical/quantum/no-
signaling if the honest committer behavior is classical/quantum/no-signaling.

From now on, we will only consider one round commitment scheme as bipartite systems and use this
probability distributions framework. We note that here we see s, c, t as strings but if each party is made of
different sub-parties, then those would be tuples. In particular, in [5] B was composed of 2 or 3 provers.
Later in this work, we will consider B to be composed of 3 and 4 non-communicating provers.

Using this framework we can define the notion of soundness, hiding and binding in a more precise way.

Definition 4. A commitment scheme is said to be α-sound if Probb(Acc|b) ≥ α, and perfectly sound if
α = 1.

Definition 5. A commitment scheme is said to be ϵ-hiding if for all s we have 1
2

∑
c,t |p0(c|s)−p1(c|s)| ≤ ϵ.

It is perfectly hiding if ϵ = 0.

Definition 6. A commitment scheme is ϵ-binding if for any strategy, the value on the following binding
game is less than 1+ϵ

2 :

1. A sends s
2. B commits by sending c
3. A sends a bit b
4. B sends opening t
5. V accepts if t opens c to b

Example 1. Consider the following two provers commitment scheme were P1, P2 cannot communicate :

1. On security parameter λ, Setup returns n = λ.
2. V chose uniformly at random s ∈ {0, 1}n, and P1, P2 agree on some value t.
3. To commit, V sends s to P1, and P1 returns c = t⊕ b · s.
4. To open, P2 sends t to V and V verifies that c⊕ t is equal to 0 or s and deduce the value of b.

This is perfectly hiding as p0(c|s) = p1(c|s) = Unif({0, 1}n).
For the binding, for fixed s, c and after receiving b from the verifier P2 needs to open c as b. However,

to open the value to b, P2 needs to send t ⊕ b · s. Classically and quantumly, one can show that the best
strategy is guessing this value. Thus, the scheme is 2−n binding against classical (and quantum) adversaries.

However, this commitment scheme is not binding when we allow more powerful strategies called no-
signaling, which we will now explain.
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1.3 No-signaling

In the context of non-local games, two parties play together by agreeing on a strategy. In the case of two
player, they receive respectively inputs x, y and need to output a, b satisfying some acceptation condition
Acc(a, b|x, y).

For a given game, one can classify the different strategies using the type of correlation between the answers
of all parties. For example, in a two player game, if both parties are restricted to be classical and deterministic,
then the set of possible strategies is of the form {p(a, b|x, y) = δa′(a) · δb′(b)|a′ ∈ A, b ∈ B} where δa is the
probability distribution where δa(a) = 1 and δa(a

′) = 0 if a′ ̸= a. If however we allow the players not to be
deterministic then we have access to all strategies of the form {p(a, b|x, y) =

∑
r p(r)δa′(x|a, r)·δb′(y|b, r)|a′ ∈

A, b′ ∈ B}. Similarly we can define other class of strategies, their mutual inclusions are represented in Fig. 2.
In this work we are interested in strategies which are no-signaling. A strategy is said to be no-signaling if it
can be implemented using players which do not communicate during the game.

CLASSICAL

QUANTUM

NO-SIGNALING

SIGNALING

Fig. 2: Hierarchy of correlations

The differences between theses classes of strategy is highlighted by the CHSH game. In this game, two
player receive two bits x, y and they need to output a, b such that a⊕b = x ·y. One can show that classically,
the best strategy gives a winning probability of 3

4 . When allowed to share an entangled quantum state, the
provers can use more powerful strategies and can win with probability cos2(π8 ) ≃ 0.85. Finally, when we
consider no-signaling strategies one can win with probability 1.

In order to explain how such a strategy can exist, we will explain the formal way to define no-signaling.

Definition 7. (No-signaling strategy)
A strategy θ in a one-round non-local game is said to be no-signaling if

θ(a|x, y) = θ(a|x) and θ(b|x, y) = θ(b|y)

Remark 3. It is very important to note that this does not mean that the answer b cannot depend on x. It
means that b can depend on x as a function but not as a random variable, ie the marginal distribution of b
cannot depend on x. This can be subtle but this is what makes no-signaling strategies powerful.

Let us now explain how we can win with probability one in the CHSH game. Consider the following
strategy

θ(a, b|x, y) =

{
1
2 if a⊕ b = x · y
0 otherwise

.

First, let us show that this corresponds to a valid probability distribution.

∑
a,b

θ(a, b|x, y) =
∑

a,b=(x·y)⊕a

θ(a, b|x, y) =
∑
a

1

2
= 1 .
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Let us now consider the value of this strategy on the CHSH game :

w(θ) =
∑
x,y

Prob(x, y)
∑
a,b

θ(a, b|x, y)Acc(a, b|x, y)

=
∑
x,y

1

4

∑
a,b=(x·y)⊕a

θ(a, b|x, y)

=
∑
x,y

1

4

∑
a

1

2

= 1 .

We now need to show that the strategy is no-signaling.

θ(a|x, y) =
∑
b

θ(a, b|x, y)

=
∑

b=(x·y)⊕a

θ(a, b|x, y) as for the rest the probability is 0

=
1

2
= θ(a|x)

and similarly for θ(b|x, y) as this is symmetric in a, b and x, y. Thus, this is indeed a valid no-signaling
strategy and it has value 1.

2 The bit commitment of [5]

In [5], the authors prove that any 2 prover bit commitment which is one-round, perfectly hiding, perfectly
sound cannot be binding against no-signaling adversaries. They actually show a way to break the binding
with probability 1 on those commitment scheme. Furthermore, they provide a three provers commitment
scheme which is perfectly hiding, perfectly sound and statistically binding against no-signaling adversaries.
This scheme is basically the same as the commitment from Example 1 but with one more prover, which is
asked to imitate the opener. We present their scheme in Figs. 3 and 4.

Commit Phase

t

Prover 1
(P1)

Prover 2
(P2)

Prover 3
(P3)

Verifier
(V)

s [b] = t⊕ b · s

Fig. 3: Commit phase diagram

Reveal Phase

t

Prover 1
(P1)

Prover 2
(P2)

Prover 3
(P3)

Verifier
(V)

t t

Fig. 4: Reveal phase diagram
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Let us prove that this commitment is indeed perfectly hiding, perfectly sound and statistically binding
to get used with the different notions.

For the hiding, to commit to 0, P1 sends t, thus p0(c|s) = Unif({0, 1}n) as t is taken uniformly at random
in {0, 1}n. To commit to 1, P1 sends t⊕ b · s meaning that p1(c|s) = Unif({0, 1}n). Thus p0(c|s) = p1(c|s)
and the scheme is perfect hiding.

Now, let us show that this is perfectly sound

Prob[Acc|b] =
∑

s,c,t,t′

Prob(s)pb(c, t, t
′|s)Acc(c, t,′ t|s, b)

=
∑

s,c,t,t′

Prob(s)pb(c, t, t
′|s)1[c⊕ t = b · s, c⊕ t′ = b · s]

=
∑
s

∑
t

Prob(s)pb(t⊕ b · s, t, t|s) Since in the honest case c = t⊕ b · s and honest openers send t

=
∑
s

∑
t

2−2n

= 1 .

Finally, we need to show that this scheme is binding against no-signaling adversaries. For this let us
consider the binding game : the first prover commits on a value c after receiving s. The two other prover
receive a bit b and need to return a2, a3 such that it opens c to b. Let θ a no-signaling strategy, and let us
call b, d the bits received by P2, P3.

Probθ(Acc|0) + Probθ(Acc|1) = θ(a2 = c⊕ b · s, a3 = c⊕ d · s|b = 0, d = 0) + θ(a2 = c⊕ b · s, a3 = c⊕ d · s|b = 1, d = 1)

≤ θ(a2 = c⊕ b · s|b = 0, d = 0) + θ(a3 = c⊕ d · s|b = 1, d = 1)

= θ(a2 = c⊕ b · s|b = 0, d = 1) + θ(a3 = c⊕ d · s|b = 0, d = 1) Using no-signaling

≤ 1 + θ(a2 = c⊕ b · s, a3 = c⊕ d · s|b = 0, d = 1)

≤ 1 + θ(a2 ⊕ a3 = s|b = 0, d = 1)

≤ 1 + 2−n Using no-signaling, as a2, a3 are independent of s.

However, this commitment scheme has a very important flaw. Bit commitment is a very useful primitive
to build zero-knowledge, but in order to do so, we often have to commit to several bits and open only few of
them. In this case, we must guarantee the hiding property of the remaining ones. For example, if one wants
to convince they know a coloring of a graph without revealing it, they need to commit to the whole coloring
and only reveal the colors of an edge. However, using this bit commitment, one cannot obtain this selective
opening. In particular, if one commits several bits using this method, P2,P3 when asked respectively i, i′

will answer ti, ti′ . But in this case, one can learn four different colors, which breaks the hiding needed for
zero-knowledge.

Thus, this work aims at creating a one round bit commitment which would be perfectly hiding, perfectly
sound, statistically binding against no-signaling adversaries and which would guarantee that any verifier can
only learn one bit, and can chose which bit they open.

3 Interpretation Games

Definition 8. (Interpretation)

An interpretation I is a family of 4n bijections of {0, 1}n. Thus we can write I = (Ix,b)x,b∈{0,1}n .

Definition 9. (Interpretation game)

Let (Ix,b)x,b an interpretation, consider two parties A,B such that A receives x and B receives y. To win
the interpretation game, A and B must respectively answer a, b such that Ix,b(a) = y without communicating.
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Interpretation games represent a strict subset of a more general family called projection games [11]. A
game is said to be a projection if for any pair of input, and any answer from player 2, then there is exactly
one answer player 1 can output which end up in a win. More formally, given x, y, b the winning condition of
a projection game can be written as a = πx,y(b) where πx,y is the function linking the answer of player 2 to
the only good answer of player 1.

In our case, we can define π as πx,y(b) = I−1
x,b(y). Thus, interpretation games are projection games. How-

ever, they represent a strict subset as CHSH is a projection game but cannot be written as an interpretation
game. More generally, given πx,y the function Jx,b : y 7→ πx,y(b) might not be invertible which does not allow
to write the winning condition as Ix,b(a) = y.

Projection games can be seen as a function Π : (x, y) 7→ πx,y where πx,y is a function. In particular,
interpretation games are the projection games where Π(x, ·)(b) : y 7→ Π(x, y)(b) is bijective for all x, b ∈
{0; 1}n.

Alice Bob

x y

a b

Win if Ix,b(a) = y

No communication

Fig. 5: Schematic of the interpretation game: A receives x, B receives y, and must output a and b such that
Ix,b(a) = y.

Example 2. Take Ix,b(a) = x⊕ a⊕ b. This is a valid interpretation, and the associated interpretation game
has classical value 1, using strategy a = x, b = y,for example.

Proposition 1. There exists interpretation games for which the non-signaling value is strictly smaller than
1.

Proof. Let us consider the case where n = 2, and take two functions Id and π where π is a permutation
sending 00 to 01, 01 to 00 and acts as identity on the rest. We define Ix,b as Id if b = 00 else π.

Let us consider a strategy on this interpretation game with winning probability 1.
Let us study the dependency of a on y :

Prob(a = 00|x, y = 00) = Prob(I−1
x,b(00) = 00|x, y = 00) = Prob(Ix,b = Id) = Prob(b = 00)

Prob(a = 00|x, y = 01) = Prob(I−1
x,b(01) = 00|x, y = 01) = Prob(Ix,b = π) = Prob(b ̸= 00)

Prob(a = 00|x, y = 10) = Prob(I−1
x,b(10) = 00|x, y = 10) = 0 .

Thus, either Prob(a = 00|x, y = 00) ̸= Prob(a = 00|x, y = 10) or Prob(a = 00|x, y = 01) ̸= Prob(a =
00|x, y = 10) since Prob(b = 00) + Prob(b ̸= 00) = 1. Hence, it violates the non-signaling condition, and
there cannot be a non-signaling strategy with winning probability 1 on this game. ⊓⊔

The above interpretation game explains the intuition behind the link between some imbalance in the
preimages and the decrease in no-signaling value. The idea is that if there are some pairs (a, y) such that no
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b can send a to y then they should not be output a otherwise they will lose. However, if we show that the
probability of such a cannot be 0, since the y is uniformly random, then we can bound the winning probability.

Let us now design some harder interpretation games, which also satisfies another property: having many
different bijections for a fixed x. This will be very important during the application step as we will see that
few bijections leave space to a brute search attack on the hiding.

Lemma 1. Let us assume x and y are distributed uniformly at random in {0, 1}n. There exists an efficiently
computable interpretation I, such that for a given x, there are exponentially many different Ix,b and wNS(I) ≤
1
4 .

Proof. Consider {0, 1}n and partition it depending on the last two bits of the strings : {0, 1}n = F00 ⊔F01 ⊔
F10⊔F11. We thus get a partition into 4 subsets of size 2n−2. Now, let us fix some Fαβ and see it as the space
of integers from 0 to 2n−2 − 1. Consider the cyclic shifts on this group : (x 7→ x+ k mod 2n−2)0≤k≤2n−2−1.
Those are efficiently computable permutations and there are 2n−2 different ones. We can do this for all the
subsets Fαβ . Finally, we consider the sets of permutations on {0, 1}n of the form p = p00◦p01◦p10◦p11 where
pαβ is a permutation on Fαβ extended to {0, 1}n by acting as identity on the rest of the space. Since we
have 2n−2 permutation of Fαβ for all α, β then we get a set of 24(n−2) different permutations of {0, 1}n that
are efficiently computable. We can thus index all those permutations using strings of size 4n− 8. Finally, we
define the interpretation I to be the one such that Ix,b is the permutation indexed by x|b|02n−8 where s|s′
represents the concatenation of strings s, s′. This gives us an interpretation I which contains 4n different
permutations and which is efficiently computable.

Now, let us call I some fixed interpretation constructed as presented above, and θ some strategy on the
interpretation game.

w(θ, I) =
∑
a

Prob(win|a)θ(a)

=
∑
a

Prob(win|a)
∑
x

1

2n
θ(a|x)

=
∑
a

∑
x,y

1

4n
θ(a, Sx,y,a|x, y) , where Sx,y,a denotes the set {y : Ix,b(a) = y}

=
∑
a

∑
x,y∈F (a)

1

4n
θ(a, Sx,y,a|x, y) , where F (a) denotes the coset of {0, 1}n a belongs to

≤
∑
a

∑
x,y∈F (a)

1

4n
θ(a|x) , as θ(a, Sx,y,a|x, y) ≤ θ(a|x)

=
2n · |F (a)|

4n
, with |F (a)| = 2n/4

=
1

4
.

Thus, as claimed wNS(I) ≤ 1
4 . ⊓⊔

This interpretation game is exactly what we aim to use as a basis for our cryptographic primitive. Let
us now explain how we can construct a selective opening bit-commitment using interpretation games.

4 Commitment using interpretation games

Let us now use interpretation games as the underlying security for a commitment scheme. The idea is to
guarantee the binding of the commitment using the no-signaling value of the interpretation game. However
for this we need to explain how we can use interpretation in a commitment scheme, and we then need
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to show how an attack on the commitment can be adapted into a winning strategy on the associated
interpretation game. The first subsection describes the construction of the commitment scheme, while the
two other subsection respectfully identify interpretations that could be useful and study the security of the
scheme.

4.1 From interpretation games to bit commitment

P3 P2

key Γ = ti ⊕ si,j

x = (aj
3) y = (aj

2)2

Win if Ikey,y(x) = Γ

No communication

Fig. 6: Interpretation game associated to an attack on the binding.

Let us now design a bit commitment scheme based on an interpretation game. The idea is the following :
the verifier sends one-time-pads si,j for 1 ≤ i ≤ k, 1 ≤ j ≤ m to the prover P1. P1 then encodes each of its
k bits in m different ways using m one-time-pads for each bit.

To open the jth commitment of bi, V can ask P2 for ti by sending them i, and similarly to P3 by sending
i and key. P3 then invert the bijection Ikey,ki

and sends I−1
key,ki

(ti) which V can then interpret by computing
Ikey,ki

. V considers an opening valid if the answer of P2 coincides with the interpretation of the answer of
P3. As the notation in the commitment and in the interpretation game are different, Fig. 6 illustrates the
interpretation game played with the commitment notations.

To open bi, V will open all [bi]
j for 1 ≤ j ≤ m : all the commitment of bi. Then for each j, V deduces

some value b̃ji , and do a majority vote to get its value b̃i. Now, if P2, P3 want to break the binding and get

b̃i ̸= bi, they need to win at least m/2 instances of the underlying interpretation game.

Let us consider an attack on some [bi]
j , meaning a string Γ such that Γ ⊕ [bi]

j = (1− bi) · si,j . This gives
Γ = si,j ⊕ ti. Thus, if all si,j are taken independently at random, it is the same for the attacks on the [bi]

j .
Hence, breaking the binding of this new protocol, would imply winning in m

2 independent interpretation
games, as key and Γ are independent between each game.

Let us now make the link between interpretation games and attacks on the commitment scheme more
explicit. Furthermore, as the notation used in each context is not exactly the same, let us make it more
understandable.

First, let us abstract the protocol : we will denote by q1, q2, q3 respectively the question from the verifier
to prover P1, P2, P3, similarly for the answers a1, a2, a3. Furthermore, for a message that would have mul-
tiple parts we denote mi as the ith part of the message : m = m1,m2. We refer to Fig. 7 for the abstract
representation of the protocol.

10
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Abstraction

shared

Prover 1
(P1)

Prover 2
(P2)

Prover 3
(P3)

Verifier
(V)

(qi,j1 )i,j

(ai,j
1 )i,j

q2
(
(aj

2)1, (a
j
2)2

)
j

q13 , q
2
3 (aj

3)j

Fig. 7: Abstraction of the protocol

For example in the honest protocol we would have :

– q1 = (si,j)i,j and qi,j1 = si,j
– q2 = i
– q3 = (i′, key) and q13 = i′, q23 = key
– a1 = ([bi]

j)i,j and ai,j1 = [bi]
j

– a2 = (ti, ki)1≤j≤m and aj2 = (ti, ki) and (aj2)1 = ti
– a3 = (I−1

key,ki′
(ti′))1≤j≤m

Let us consider an attack on the binding of the commitment scheme. This means that the provers P2, P3
managed to respond with consistent answers that open the opposite bit as the one committed. Let us
call Γ the answer that they return (after interpretation for the one of P3) we have that (aj2)1 = Γ , and

Ikey,(aj
2)2

(aj3) = Γ . Since the answers of P2, P3 cannot depend as random variable on Γ due to no-signaling

conditions, we have that from any attack on the commitment scheme we can extract a strategy on the
interpretation game whose value depend on the success probability of the attack. Since the answer of P2 is
independent of P3, we can just consider the case where P2 is the one receiving Γ in the interpretation game
and tries to make the interpretation of aj3 equal to Γ . This is exactly the setting of interpretation games

with : Γ = ti ⊕ si,j , key = key, x = aj3 and y = (aj2)2. We represent this link in Fig. 6.

4.2 Finding good interpretation games

The framework of interpretation games can be directly implemented in the bit commitment protocol, as
shown in the diagram of the protocol (Fig. 9) when considering P3 as Alice and P2 as Bob. The idea is that
the verifier is going to interpret the answer of P3 according to some interpretation. To be able to use the
proof of [5] we need to prove that the probability of acceptation is the same when P2, P3 agree on the value
they want to open and when they disagree. Since the interpretation of the answer of P3 depends on P2 it
is not obvious how to achieve it.

The interpretation should have for each key an exponential amount of different functions Ikey,y, else the
verifier could try them all. Furthermore, for a wrong function, the interpretation of the message of P3 will
be uniformly random while for the valid one it will give either 0 or si when adding [bi]. Since a brute search
is possible, we need to ensure an exponential number of possible functions.

11
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Furthermore, to preserve the proof, we would require an interpretation with negligible no-signaling value.
As this might be hard to find, we for now focus on looking for interpretation with constant (or 1 − 1

Poly )
no-signaling value, with exponential number of different Ikey,y for each key. This would be further improved
with parallel repetition.

Lemma 2. Let I be an interpretation constructed in Lemma 1, and assume key, Γ are distributed uniformly
in {0, 1}n, call G the associated interpretation game. There exists µ > 0 which depends on G such that for

any n ∈ N, wNS(G
m
2 /m) < 8e

−µn
256 , where G

m
2 /m denote the m/2-out-of-m parallel repetition of G where one

wins if they win in at least half of the instances of the game.

Proof. Using Lemma 1 we know that wNS(G) ≤ 1
4 < 1

2 . Furthermore, any pair key, Γ appear with probability
1
4n > 0. Thus, we can use the (m/2-out-of-m) parallel repetition for complete support games of [3], their
theorem 15 gives the result with δ = 1

4 . ⊓⊔

We finally need to argue that the hypothesis made above make sense in the context of this cryptographic
protocol. We can enforce the honest verifier to chose the key uniformly at random. However, for the Γ , we
need to prove that attacks must be also uniformly randomly distributed.

Proposition 2. Let Γ be a string such that given Γ as answer, b̃ji = 1− bi, then Γ is distributed uniformly
at random in {0, 1}n.

Proof. Using the verifier’s program we know that{
b̃ji = 0 if Γ ⊕ [bi]

j = 0

b̃ji = 1 if Γ ⊕ [bi]
j = si,j

Thus, if Γ induces b̃ji = 1− bi we get that Γ ⊕ [bi]
j = (1− bi)si,j , and hence Γ = ti ⊕ si,j .

Now, as si,j is distributed uniformly at random in {0, 1}n, we get that it is the same for Γ . ⊓⊔

4.3 Security of the bit commitment

Let us now use the abstract notation of the commitment introduced in Section 4.1.

In order for the jth answer of P2 to be a valid opening of [bi]
j on value c we need

(aj2)1 = ai,j1 ⊕ c · qi,j1

Similarly, for the answer of P3 to be a valid opening of [bi]
j on value d we need

aj3 = I−1

q23 ,(a
j
2)2

(ai,j1 ⊕ d · qi,j1 )

Let us show that using the interpretation games framework, we can ensure that the probability that P3
successfully outputs an opening of bi on value d is independent of the value c chosen by P2. More formally,
let us prove that∣∣∣θ (Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 0, d

)
− θ

(
Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 1, d

)∣∣∣ ≤ ϵ

(1)
where ϵ is negligible and Maj(a3) returns the valid answer with the most occurrences, with the definition
that aj3 is valid if the verifier can deduce a value b̃ji from it and if its interpretation coincides with (aj2)1.
Furthermore, we add the requirement that all the openings for a given bi must be valid for V not to abort
in the protocol.

In order to prove this inequality, let us show that any strategy θ violating it would imply the existence
of a winning strategy on the repeated interpretation game with probability greater than ϵ. Then using the
parallel repetition theorem, we can show that the no-signaling value of the repeated interpretation game can
be made smaller than ϵ, thus showing that θ cannot exist.

12
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Lemma 3. Let I be an interpretation as constructed in Lemma 1 and consider the bit commitment protocol
as defined above. Then for any no-signaling cheating strategy θ Eq. (1) holds.

Proof. As stated above, let us show that a violation of the inequality implies a winning strategy on a re-
peated interpretation game.

Assume the existence of θ such that∣∣∣θ (Maj(a3) = I−1
q23 ,a

2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 0, d

)
− θ

(
Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 1, d

)∣∣∣ > ϵ

Given i, j, let us call cj , dj the value P2, P3 chose to open for the jth version of the commit of bi.

In the case where cj ̸= dj , if both the answers of P2 and P3 are valid opening to their chosen values,
then

Iq23 ,(a
j
2)2

(aj3)⊕ (aj2)1 = cj · qi,j1 ⊕ dj · qi,j1 = qi,j1

However due to no-signaling condition, the answers of P2, P3 cannot depend on the question to P1 as
random variables. Thus the probability happening is smaller than 2−n.

Let us now consider the case where cj = dj ̸= bi : the provers are trying to break the binding

property. Since (aj2)1 and Iq23 ,(a
j
2)2

(aj3) need to coincide, we can see this as an interpretation game where

q23 = key, (aj2)2 = y, aj3 = x and (aj2)1 = Γ = ti ⊕ si,j as they want to cheat on the opening.

More precisely, consider θ′ to be the strategy on interpretation game I, where on input ti ⊕ si,j and key
to P2, P3 acts as :

θ′(x, y|Γ, key) =
∑
q2

θ(a2 = (Ikeyj ,yj
(xj), yj)j , a3 = (xj)j |q1, q2, q3)Prob(q2)

= θ(a2 = (Ikeyj ,yj (xj), yj)j , a3 = (xj)j |qi1, q2 = i, q3) ,

where we can fix i = q2 as the strategy θ is symmetric on q2 : which bit is being opened does not change
anything. Let us now study the winning probability of θ′ on the m/2 out of m parallel repetition of the
interpretation game.

w(θ′, I) =
∑

Γ=(Γj)j

∑
key=(keyj)j

Prob(Γ, key)
∑
x,y

θ′(x, y|Γ, key)⊮[|{j:Ikeyj,yj
(xj)=Γj}|≥m/2]

=
∑

Γ=(Γj)j

∑
key=(keyj)j

Prob(Γ, key)
∑
x,y

θ(a2 = (Ikeyj ,yj
(xj), yj)j , a3 = x|qi1, q2 = i, q3)⊮[|{j:Ikeyj,yj

(xj)=Γj}|≥m/2]

where qi1 = Γj ⊕ ti and q3 = i, (keyj)j

=
∑

qi1=(qi,j1 )j

∑
q3=i,(qj3)j

Prob(qi1, q3)
∑
x,y

θ(a2 = (Ikeyj ,yj (xj), yj)j , a3 = x|qi1, q2 = i, q3)⊮[|{j:Ikeyj,yj
(xj)=Γj}|≥m/2]

= Prob(θ breaks binding |q2 = i)

= Prob(θ breaks binding )

Thus if∣∣∣θ (Maj(a3) = I−1
q23 ,a

2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 0, d

)
− θ

(
Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|q1, q2, q3, c = 1, d

)∣∣∣ > ϵ

Then it means that with probability at least 2−n + ϵ θ breaks the binding of the commitment scheme,
which implies that θ′ wins the m

2 out of m parallel repetition of the interpretation game. However, as proved
in Lemma 2 the no-signaling value of this game can be made arbitrarily negligible. Thus θ cannot exist.

Hence, for any cheating no-signaling strategy θ, we have that Eq. (1) holds. ⊓⊔

13



J. Guyot

Remark

It is important to note that breaking the binding is even stronger than winning in the interpretation game
in the sense that the strategy allowed to break the binding are more restrictive than the one allowed in the
interpretation game. To see this, one can realize that in the commitment, the answer of P2 and P3 cannot
depend on q1 as a random variable, and we use this to derive the binding property. However in the inter-
pretation game, the answer of B which corresponds to P2 is allowed to depend on Γ which depends on q1.

However what is important to see here is that if a strategy θ is no-signaling and breaking the binding on
the commit, then in particular the associated strategy θ′ on the interpretation game is no-signaling on
the interpretation game and wins the m/2 out of m parallel repetition of this game.

Let us now prove using Lemma 3 that the bit-commitment is secure against no-signaling adversaries.

Theorem 1. The bit commitment protocol describe above is 2−(n−1) binding against no-signaling adver-
saries.

Proof. Let θ be a no-signaling strategy on the commitment scheme described above. Let us assume that
some bits have been committed, and we are now trying to open on of them : bi. We want to show that
the sum of acceptance for both openings will be smaller than 1 + 2−(n−1), which would make the commit
statistically binding. Let us write θ(q, a|c, d) = Prob(q)θ(a|q, c, d) where q = (q1, q2, q3) and a = (a1, a2, a3),
and c, d are the values P2, P3 want to open bi on.

Prob∗θ[Acc|0] + Prob∗θ[Acc|1]

= θ
(
Maj((aj2)1) = aq21 ⊕ c · qq21 ,Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|c = 0, d = 0

)
+ θ

(
Maj((aj2)1) = aq21 ⊕ c · qq21 ,Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|c = 1, d = 1

)
≤ θ

(
Maj((aj2)1) = aq21 ⊕ c · qq21 |c = 0, d = 0

)
+ θ

(
Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|c = 1, d = 1

)
≤ θ

(
Maj((aj2)1) = aq21 ⊕ c · qq21 |c = 0, d = 1

)
+ θ

(
Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|c = 0, d = 1

)
+ 2−n Using Eq. (1) with ϵ = 2−n,m = O(n)

≤ 1 + θ
(
Maj((aj2)1) = aq21 ⊕ c · qq21 ,Maj(a3) = I−1

q23 ,a
2
2
(aq21 ⊕ d · qq21 )|c = 0, d = 1

)
+ 2−n

≤ 1 + 2−n + θ
(
Maj((aj2)1)⊕ Iq23 ,a2

2
(Maj(a3)) = qq21 )|c = 0, d = 1

)
≤ 1 + 2−(n−1) as a2, a3 are independent of q1 as random variables.

Thus, with m = Poly(n), and I constructed as in Lemma 1, the commitment scheme designed in
Section 4.1 is 2(n−1) binding. ⊓⊔

Lemma 4. The protocol of Theorem 1 is perfectly sound, but does not guarantee selective opening.

Proof. Consider the commitment scheme designed in Section 4.1 with the interpretation of Lemma 1. We
already proved the 2−(n−1) binding against no-signaling adversaries in Theorem 1.

For the perfect soundness, in the honest case, P2 can output ti when asked i, and P3 can output I−1
key,ki

(ti)
as it is a bijection, so P3 can compute the good preimage to the honest bijection. Thus, with probability 1,
the provers can honestly open the commit. I can be noted that this honest strategy is classical.

The perfect hiding of the scheme comes from the perfect hiding of the scheme in [5] as the commit part
of the scheme is the same (though we ask for O(n) versions of the commits).

However, we also need to show that introducing the interpretations does not allow V to learn more than
one committed bit and this is where the problem is. As honest P2 returns ti when asked i, V can learn the
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value of the bit bi. However, given ([bi′ ]
j)j and Ikey,k−1

i′ (ti′ )
the verifier can also guess the value of bi′ with

i′ ̸= i.

Recall the structure of the interpretation I. We partitioned the set {0, 1}n in 4 subspaces and each Ikey,y
preserves each subspace. Thus, given x the answer of P3 we know which subset ti′ is in. We can also compute
which subset t⊕ s is in. And then we can compare it to the subset of [b]. Furthermore, for the interpretation
of Lemma 1, the only case where the subsets are the same is when s finishes by 00. Thus the malicious
verifier can make sure no s finishes in 00 and can always guess bi′ .

Remark

What is very important to take from this lemma is that the attack is linked to the fact that we partitioned
the set of words. If there was no such partition then we would have a secure bit commitment.

Definition 10. (Good interpretation)
An interpretation I is said to be good if it satisfies the following properties :

– wNS(I) ≤ 1− 1
Poly

– For any key, |{Ikey,y}y| = 2n

– For all key, y Ikey,y is efficiently computable (in PPT)
– For all key, x Tkey,x = {Γ : ∃y, Ikey,y(x) = Γ} = {0, 1}n

Remark

Asking that for any key, |{Ikey,y}y| = 2n is necessary to ensure that learning Ikey,y(ti′) does not reveal
any information about ti′ , and thus get perfect hiding.

Corollary 1. Assuming the existence of a good interpretation I, for every positive integers n, k, there exists
a classical one round three provers selective opening commitment scheme that is perfectly sound, perfectly
hiding and 2−(n−1) binding against no-signaling adversaries, where with probability 1−2−n the verifier learns
the value of only one bit. The verifier communicates k × O(n2) bits to the first prover, receives k × O(n2)
bits from the first prover and O(n2) bits from the others, where k is the number of bits committed.

Proof. Consider the commitment scheme designed in Section 4.1 with the good interpretation. We already
proved the 2−(n−1) binding against no-signaling adversaries in Theorem 1, and the hiding and soundness
can be derived from Lemma 4.

Let us explain in more detail why in this case V cannot learn two committed bits. Since we have that
for all key, x we get Tkey,x = {0, 1}n we get that knowing I−1

key,ki′
(ti′) does not give any information about

ti′ , since V does not have any information about ki′ and that for any fixed key the set {Ikey,y}y has size 2n.
Thus, with probability 1− 2−n V learns only one bit. ⊓⊔

What we essentially did here is reducing the existence of a no-signaling secure, selective opening bit com-
mitment scheme to the existence of a particular object that we call good interpretations. In Appendix B, we
study interpretations and their associated games in more depth and analyze the existence of such objects. It
is proven in Theorem 3 that in fact no good interpretations exists, and as such any commitment scheme de-
signed as above, based on interpretation games, would not be no-signaling statistically binding and perfectly
hiding with selective opening.

5 Taking a step back

Before trying to design a new bit commitment using another tool, let us take a step back and try to un-
derstand what went wrong with the previous design. Since we wanted that the verifier could not open more
than one bit, we asked that given the commit and the answer of P3, V could not guess the committed bit.
In a way, P3 was actually part of the commit and not really part of the opening. Thus, one can take a step
back and wonder about the existence of a bit commitment scheme using 2 committers and one opener which
would be perfectly hiding, perfectly sound and binding against no-signaling adversaries. In this case, we can
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use the impossibility result of [5] for the 2 prover commitment scheme, and adapt it to 2 committers and
one opener schemes.

Lemma 5. For all k ∈ N, there is no commitment scheme with k committers, 1 opener which is perfectly
sound, perfectly hiding and has binding against no-signaling adversaries.

Proof. (Informal)
First recall that on the binding game, the k first provers commit, then the verifier sends b to the opener

which need to open the commit on value b. Let us call s all the messages sent to the first k provers and c
their answer, and t the answer of the opener.

Let us consider the following strategy on the binding game :

θ(c, t|s, b) = Probb(c, t|s)

Meaning that θ behaves as the honest provers trying to commit and then open b.

First of all, as the scheme is perfectly sound, this strategy has winning strategy 1. However we need to
show that this is no-signaling.

First we have θ(c|s, b) = θ(c|s, 1 − b) since the commitment is perfectly hiding. Now for the other
condition, θ(t|s, b) =

∑
c Probb(c, t|s) , and

∑
c Probb(c, t|s) do not depend on s as the honest provers do

not communicate and thus are no-signaling. ⊓⊔

Remark 4. A more formal proof can be found in Appendix C

This gives the intuition that the commitment scheme we are trying to design cannot exist when using
only 3 provers. However, we need to prove this more formally. In this sense, Theorem 2 formally proves
the impossibility by identifying a binding breaking no-signaling strategy for any simple one round perfectly
hiding and perfectly sound commitment scheme where the verifier can open at most one bit. One can think
of the commitment scheme as committing m bits, and the verifier asks indices i, j to P2, P3. The idea is
that not learning more than one bit, means that either commit, t2 or commit, t3 is hiding.

Definition 11. A one round commitment scheme is said to be simple if each prover involved in the scheme
appears in either the commitment phase or in the reveal phase but not in both.

Furthermore, a commitment is said to be fixed set hiding if there exists a set S ̸= ∅ such (c, (ti)i∈S) is
hiding.

Remark 5. In the attempt to build a commitment scheme using interpretation games, we defined a commit-
ment which was fixed set hiding as c, t3 was hiding, where t3 is the answer of P3.

Now we need to state formally what ”learning only one bit” means. When asking i to P2 and j to P3,
V can only learn one bit bi or bj . This means that for all s, i, j at least t2 or t3 is hiding. Since the honest
provers being no-signaling we have that pb(t2|s, i, j) = pb(t2|i) and pb(t3|s, i, j) = pb(t3|j). Let us denote by
I (resp J) the set of indices i such that p0(ci, t2|i) ̸= p1(ci, t2|i) (resp p0(cj , t3|j) ̸= p1(cj , t3|j)). Meaning
that i ∈ I if P1, P2 are not hiding on query i. Let us assume that both I, J are non-empty. There exists
i0 ∈ I, j0 ∈ J , if i0 ̸= j0 then on query i0, j0 V obtain information on two bits. Thus this is not perfectly
hiding. Thus, either I = J = {i0} or I = ∅ or J = ∅. If one of the set is empty, we get that the scheme is
fixed set hiding. Thus, not learning more than one bit implies either fixed set hiding or that the leakage of
information is restricted to only one committed bit.

Theorem 2. There is no simple one-round commitment scheme with 3 provers which is perfectly hiding,
perfectly sound, statistically binding against no-signaling provers, where the prover can open only one bit.

Proof. Let us consider a simple one round 3 provers commitment scheme Com which is perfectly hiding,
perfectly sound, where the prover can open only one bit. As proved above, if there are two committers and
one opener, the scheme is not binding. In the case of one committer and two openers, we have that the
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commitment scheme is either fixed set hiding or has restricted leakage.

Let us first consider the fixed set hiding case, and suppose without loss of generality that the commit and
the answer of P2 are perfectly hiding. Com is defined by the distributions p(s1), p0(c1, t2, t3|s1, i, j), p1(c1, t2, t3|s1, i, j)
and the predicate Acc(c1, t2, t3|s1, b, i).

Let us consider the strategy on the associated binding game defined as

q(c1, t2, t3|s1, b2, i, b3, j) = pb3(c1, t2, t3|s1, j)

Let us prove that this indeed breaks the binding :

Prob(Acc|b) =
∑
s1,i

∑
c1,t2,t3

p(s1)q(c1, t2, t3|s1, b, b, i, i)Acc(c1, t2, t3|s, i)

=
∑
s1,i

∑
c1,t2,t3

p(s1)pb(c1, t2, t3|s1, i)Acc(c1, t2, t3|s1, b, i)

= 1 , as Com is perfectly sound.

Let us now prove that this strategy is indeed no-signaling. For this we need to compute all the marginals
for each subset of provers and show that they are independent of the queries to the other provers.

q(c1|s1, b2, i, b3, j) = pb3(c1|s1) = p1−b3(c1|s1) = q(c1|s1) , as Com is perfectly hiding

q(c1, t2|s1, b2, i, b3, j) =
∑
t3

q(c1, t2, t3|s1, b2, i, b3, j)

=
∑
t3

pb3(c1, t2, t3|s1, i, j)

= pb3(c1, t2|s1, i) , as honest provers are no-signaling

= p1−b3(c1, t2|s1, i) , as c1, t2 are perfectly hiding for all i

= q(c1, t2|s1, i)

q(c1, t3|s1, b2, i, b3, j) = pb3(c1, t3|s1, j) = q(c1, t3|s1, b3, j)

q(t2|s1, b2, i, b3, j) =
∑
c1,t3

q(c1, t2, t3|s1, b2, i, b3, j) = pb3(t2|s1, i) = pb3(t2|i) = p1−b3(t2|i) = q(t2|b2, i)

q(t3|s1, b2, i, b3, j) =
∑
c1,t2

q(c1, t2, t3|s1, b2, i, b3, j) = pb3(t3|j) = q(t3|b3, j)

q(t2, t3|s1, b2, i, b3, j) =
∑
c1

q(c1, t2, t3|s1, b2, i, b3, j)

=
∑
c1

pb3(c1, t2, t3|s1, b2, i, b3, j)

= pb3(t2, t3|s1, b2, i, b3, j)
= pb3(t2, t3|b2, i, b3, j), as honest provers are no-signaling

= q(t2, t3|b2, i, b3, j)
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Thus, this strategy is indeed no-signaling, and it has value 1.

Let us now consider the restricted leakage case. Meaning that there exists exactly one index i0 such
that p0(ci0 , t2|i0) ̸= p(ci0 , t2|i0). In this case, there is no probability 1 attack on the binding as the attack
restricted to the case i = j = i0 would be an attack on the scheme from [5]. However, consider an attack
inspired by the previous case defined as

q(c1, t2, t3|s1, b2, i, b3, j) =


pb3(c1, t2, t3|s1, i, j) if = i ̸= i0 and j ̸= i0

2−npb2(c1, t2|s1, i) if i ̸= i0 and j = i0 where

2−npb3(c1, t3|s1, j) if i = i0 and j ̸= i0

4−n if i = i0 and j = i0

One can check that this strategy is indeed no-signaling and has value 1− 1
m on the binding game, where

m = Poly(n) is the number of committed bits. Thus, even in this case, the commitment scheme does not
have statistical binding. Furthermore, parallel repetition would not work as it would create the opportunity
to learn more than one bit.

Thus, any three prover commitment scheme where the verifier cannot learn more than one bit cannot be
perfectly hiding, perfectly sound and statistically binding against no-signaling adversaries.

⊓⊔

This theorem only captures the case where we have 3 provers. In the general case, it seems hard to define
a binding breaking strategy that is no-signaling : the first intuition would be to commit honestly on the
bit that has majority among the bi, but this might induce difference of behavior between Pi is part or the
majority or not, and thus some signaling.

Another important observation, is that Theorem 2 only consider the case of perfectly hiding commitment
schemes. In fact, just as it is done in [5], if the scheme was ϵ-hiding, we could derive a α− ϵ binding breaking
strategy on the commitment from the attack of Theorem 2 where α = 1 if the scheme is fixed set hiding and
1− 1

m in the other case. [5] also extends their results to non-simple commitment schemes which we did not
do in this work, but would be an interesting follow-up.

6 On the possibility of bit commitment with 4 provers

This step back was very useful as we now know that we need at least 4 provers involved in the scheme to
get the desired properties. We now want to find such commitment schemes. However, to study them, we will
use another technique : linear programming.

The space of no-signaling strategies is a convex polytope, due to the linearity of the constraints it is sub-
ject to. Thus, one can use convex optimization to study the no-signaling binding property of a commitment
scheme. For this we can use linear programming, with exponentially many constraints. The fact that we can
study the set of no-signaling strategy using linear programming with exponentially many constraints is the
reason why MIPNS ⊆ EXP.

As such, we implemented the commitment schemes from [5] : the two prover scheme and the three
prover alternative to check their result experimentally. Thus, for n ≤ 3 we retrieve their result. Furthermore,
the bound 2−n on the binding parameter of the three prover scheme is tight. We then implemented other
commitment schemes to gain intuition on their binding.

6.1 1 committer, 2 openers and an imitator

The idea behind this scheme is to keep the exact same commit as before : [b] = t⊕ b · s. Then P2, P3 need
to output a2, a3 such that a2⊕a3 = t. Finally, to ensure binding, the idea was to add P4 such that on input
2 P4 must output a2 else on input 3 P4 outputs a3. The intuition comes from the 3 prover commitment of
[5] where P3 imitates P2. However, linear programming revealed that this scheme is not binding. We detail
the algorithm used for this analysis in Algorithm 1.
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6.2 Using secret sharing for bit commitment

One solution for this is to consider a scheme where there are 4 provers, P1 commits just as before, and
P2, P3, P4 are doing a 2, 3 secret sharing on the (ti)i (see Figs. 10 and 11). Meaning that P2 has (t2i )i

similarly for P3, P4 and for any i having any pair of tji , t
j′

i with j ̸= j′ reveals ti. However, if one posses only

on tji they do not learn anything about ti.

Using 2, 3 secret sharing we directly get that the new scheme is perfectly hiding and V can only learn
one bit, it is also perfectly sound. We now need to study the binding against no-signaling adversaries. Linear
programming reveals that for n = 2 there is a non-signaling strategy breaking the binding with probability
1. After analyzing this attack, we can then extend it to arbitrary n, and show that the bit commitment using
secret sharing is not binding.

Let us denote by checki,j the fact that the condition
ai−aj

ci−cj
= a1+ bi · s is satisfied. To break the binding,

one can consider the following strategy :

θ(a1, a2, a3, a4|s, c2, c3, c4, b2, b3, b4) =



1
q2 if b2 = b3 = b4 and check2,3, check2,4, check3,4
1
q3 if b2 = b3 ̸= b4 and check2,3
1
q3 if b2 = b4 ̸= b3 and check2,4
1
q3 if b3 = b4 ̸= b2 and check3,4

0 otherwise

It is proved in Proposition 5 that this is indeed a no-signaling strategy with value 1 on the binding game.

7 Conclusion

In this work, we explored the design of selective opening bit commitment schemes secure against no-signaling
adversaries. We introduced the interpretation game framework, analyzed its cryptographic potential, and
established strong limitations, including impossibility results in certain settings and negative outcomes from
linear programming experiments. These findings, together with the inherent constraints highlighted in our
analysis, lead us to think that such commitment schemes might be impossible. We leave as future work to
try to prove a general impossibility result.
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Reveal Phase

(ti, ki)i

Prover 1
(P1)
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(P2)
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(P3)

Verifier
(V)

i (ti, ki)1≤j≤m

i′, key
(I−1

key,ki′
(ti′))1≤j≤m

Fig. 9: Reveal phase diagram

A.2 Commitment using secret sharing

Commit Phase

(ti, ki)i

Prover 1
(P1)

Prover 2
(P2)

Prover 3
(P3)

Prover 4
(P4)

Verifier
(V)

(si)i ([bi])i = (ti ⊕ bi · si)i

Fig. 10: Commit phase diagram using secret sharing

21



J. Guyot

Reveal Phase

(ti, ki)i

Prover 1
(P1)

Prover 2
(P2)

Prover 3
(P3)

Prover 4
(P4)

Verifier
(V)

i t2i
i′

t3i′
i′′

t4i′′

Fig. 11: Reveal phase diagram using secret sharing

B More on interpretation games

Let us explore a bit more the properties of interpretation games, partly as we want to know if we can build
good interpretation games but also as this is an interesting object.

The first idea would be to check if some well known non-local games can be written in the way of inter-
pretation games. In this way we can check that the CHSH game cannot be written this way, we explain this
in the following proposition.

Proposition 3. The CHSH game is not an interpretation game.

Proof. The CHSH game consists of the following : two players Alice and Bob receive respectively inputs x, y
and need to output a, b such that a⊕ b = x · y. Thus, given x, y and the answer of Bob b, there is only one
good answer defined as a = b⊕ (x · y) = πx,y(b). Hence, the CHSH game is a projection game.

Let us study the function Π : (x, y) 7→ πx,y.

– π0,0(0) = 0, π0,0(1) = 1
– π1,0(0) = 0, π0,0(1) = 1
– π0,1(0) = 0, π0,0(1) = 1
– π1,1(0) = 1, π0,0(1) = 0

We recall that for a projection game to be an interpretation game we need that for all fixed x, b,
Π(x, ·)(b) : y 7→ Π(x, y)(b) is bijective.

Here, for x = 0, b = 0 we have that Π(0, 0)(0) = 0 = Π(0, 1)(0). Thus the CHSH game is not an
interpretation game. ⊓⊔

Let us now show that we can easily find the no-signaling value for some interpretation games that we
call constant size interpretation games.

Definition 12. Constant size Interpretation
An interpretation is said to be constant size if there exists constants S, T, F such that for any x, y and

any a we have that
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– |Sx,y,a| is either 0 or S where Sx,y,a = {b|Ix,b(a) = y}
– |Tx,a| = T where Tx,a = {y|Sx,y,a ̸= ∅}.
– |Fx,y| is either 0 or F where Fx,y = {a|Sx,y,a ̸= ∅}.

Example 3. Take n = 3 and let us order the 8 binary words of length 3. Let b1b2b3b4 represent a function on
those words which sends 1 to 2 if b1 = 1 else 1 to 1 and 2 to 2, similarly for b2 with 3 and 4, etc... Consider
the 26 words made of the concatenation of 2 words of length 3, we can attach to each function 4 such words.
To do this, let us say that given (x, b) the two 3 bits word of the index, x1x2b1b2 represents the function and
x3b3 are useless.

Finally, we have that in this case, for all x, y, a |Sx,y,a = 22| : knowing x, a, y half of the b send a to y
as long as a, y are in the same block. We also have |Tx,a| = 2 for all x, a, and |Fx,y| = 2 if it is not empty.
Hence, this is a constant size interpretation.

Remark 6. If I is a constant size interpretation we get that F = T . To see prove this, observe that if a ∈ Fx,y

then y ∈ Tx, a. Thus, a is in exactly T sets Fx,y. This is similar for all a, thus
∑

y |Fx, y| = 2nF = 2nT .
Hence F = T .

It is important to note that |Tx,a| = T for all x, a does not imply |Fx,y| = F for all x, y, we do need the
condition on F in the definition of constant size, and similarly for T .

Proposition 4. For any interpretation I we have wNS(I) ≤ 2−nT where T = maxx,a |Tx,a|.

Proof. Let θ be a no-signaling strategy on the interpretation game associated to I.

w(θ, I) =
∑
a

Prob(win|a)θ(a)

=
∑
a

Prob(win|a)
∑
x

1

2n
θ(a|x)

=
∑
a

∑
x,y∈Tx,a

1

4n
θ(a, Sx,y,a|x, y)

=
∑
a

∑
x,y∈Tx,a

1

4n
θ(a, Sx,y,a|x, y)

≤
∑
a

∑
x,y∈Tx,a

1

4n
θ(a, y) as θ(a, Sx,y,a|x, y) ≤ θ(a|y)

=
∑
a

∑
x

4−n|Tx,a|θ(a|y) As θ(a|y) only depends on a

≤
∑
a

∑
x

4−nTθ(a|y) As T = max
x,a

|Tx,a|

= 2−nT

⊓⊔

Thus, considering the interpretation we built in Example 3 we get that its no-signaling value cannot
exceed 1

4 . Furthermore, applying Proposition 4 to the interpretation of Lemma 1 directly gives that the
no-signaling value is less than 1

4 .

Lemma 6. For any constant size interpretation I with T = 2n we have wNS(I) = 1.

Proof. Consider the following strategy :

θ(a, b|x, y) =

{
1

2nS if Ix,b(a) = y

0 otherwise

23



J. Guyot

First of all, it is easy to show that this strategy has value 1.

w(θ, I) =
∑
x,y

4−n
∑
a,b

θ(a, b|x, y)1[Ix,b(a) = y]

=
∑
x,y

4−n
∑
a

∑
b∈Sx,y,a

θ(a, b|x, y)

=
∑
x,y

4−n
∑
a

∑
b∈Sx,y,a

1

2nS

=
∑
x,y

4−n Here we use T = 2n and I is constant size, as we implicitly said |Sx,y,a| = S for all x, y, a.

= 1

Let us now prove that the strategy is indeed a no-signaling strategy. Let us for now fix some x, y and
show that θ defines a valid probability distribution on the outputs.∑

a,b

θ(a, b|x, y) =
∑
a

∑
b∈Sx,y,a

θ(a, b|x, y) =
∑
a

∑
b∈Sx,y,a

1

2nS
= 1

Now let us study the no-signaling conditions :

Prob(a|x, y) =
∑
b

θ(a, b|x, y)

=
∑

b∈Sx,y,a

θ(a, b|x, y)

=
∑

b∈Sx,y,a

1

2nS

= 2−n and this in independent of y

Prob(b|x, y) =
∑
a

θ(a, b|x, y)

=
∑

a=I−1
x,b(y)

θ(a, b|x, y)

= θ(I−1
x,b(y), b|x, y)

=
1

2nS
and this in independent of x

Hence, the strategy is indeed no-signaling.
⊓⊔

Remark 7. We do not need any assumption on the Fx,y for this result.

This result is important as in the context of commitment using interpretation games, we would need sets
Tx,a of constant size with T = 2n to get perfect hiding. And such interpretation has to be non-constant size,
else the no-signaling value would be 1 using Lemma 6.

However if Tx,a = {0, 1}n for all x, a. We get that for all y there is exactly one b in Sx,y,a. Thus, T = 2n

implies S = 1.

Theorem 3. There is no good interpretation.
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Proof. Since Lemma 6 does not use any assumption on Fx,y, and since Tx,a = {0, 1}n for all x, a implies
|Sx,y,a| = 1 for all x, y, a. We have that any interpretation with Tx,a = {0, 1}n for all x, a has a no-signaling
value of 1. Thus, there is no good interpretation. ⊓⊔

As interpretation games are of interest on their own, let us now try to extend the previous result to
arbitrary constant size interpretations.

Theorem 4. For any constant size interpretation I we have wNS(I) = 2−nT .

Proof. Consider the following strategy :

θ(a, b|x, y) =


1

2nS if Ix,b(a) = y

0 if y ∈ Tx,a, Ix,b(a) ̸= y
1
4n otherwise

Let us first prove that this defines a valid probability distribution over the outputs for any inputs x, y.

∑
a,b

θ(a, b|x, y) =
∑

a∈Fx,y

 ∑
b∈Sx,y,a

θ(a, b|x, y) +
∑

b/∈Sx,y,a

θ(a, b|x, y)

+
∑

a/∈Fx,y

∑
b

θ(a, b|x, y)

=
∑

a∈Fx,y

 ∑
b∈Sx,y,a

1

2nS
+

∑
b/∈Sx,y,a

0

+
∑

a/∈Fx,y

∑
b

1

4n

= 2−nF + 0 + 2n(2n − F )4−n

= 1

Thus, this indeed defines a valid probability distribution. Now, let us study the value of this strategy
and check if it is no-signaling.

w(θ, I) =
∑
x,y

4−n
∑
a,b

θ(a, b|x, y)1[Ix,b(a) = y]

=
∑
x,y

4−n
∑

a∈Fx,y

∑
b∈Sx,y,a

θ(a, b|x, y)

=
∑
x,y

4−n
∑

a∈Fx,y

∑
b∈Sx,y,a

1

2nS

= 2−nF

= 2−nT as T = F for constant size interpretations

θ(a|x, y) =
∑
b

θ(a, b|x, y)

= δa∈Fx,y

 ∑
b∈Sx,y,a

θ(a, b|x, y) +
∑

b/∈Sx,y,a

θ(a, b|x, y)

+ (1− δa∈Fx,y
)2n

1

4n

= δa∈Fx,y2
−n + (1− δa∈Fx,y )

1

2n

= θ(a|x)
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θ(b|x, y) =
∑
a

θ(a, b|x, y)

=
∑

a∈Fx,y

θ(a, b|x, y) +
∑

a/∈Fx,y

θ(a, b|x, y)

=
∑

a=I−1
x,b(y)

θ(a, b|x, y) + (2n − F )4−n

=
1

2nS
+

2n − F

4n

= θ(b|y)

This proves that the strategy indeed satisfy the no-signaling conditions. Finally, we get that for all
constant size interpretation game, there is a strategy winning with probability 2−nT , which gives wNS(I) ≥
2−nT . And using Proposition 4 we already have that wNS(I) ≤ 2−nT . Thus wNS(I) = 2−nT for all constant
size interpretations I. ⊓⊔

C More on the impossibility results

Lemma 7. For all k ∈ N, there is no commitment scheme with k committers, 1 opener which is perfectly
sound, perfectly hiding and has binding against no-signaling adversaries.

Proof. Let us consider a simple one round k + 1 provers commitment scheme Com which is perfectly hid-
ing, perfectly sound, with k committers and 1 opener. Com is defined by the distributions p(s1, . . . , sk),
p0(c1, . . . , ck, t|s1, . . . , sk), p1(c1, . . . , ck, t|s1, . . . , sk) and the predicate Acc(c1, . . . , ck, t|s1, . . . , sk, b).

Let us consider the strategy on the associated binding game defined as

q(c1, · · · , ck, t|s1, . . . , sk, b) = pb(c1, · · · , ck, t|s1, . . . , sk) .

Let us prove that this strategy is indeed no-signaling : Let I ⊆ JkK a subset of the committers,

q(cI , t|s1, . . . , sk, b) =
∑
ci:i/∈I

pb(c1, . . . ck, t|s1, . . . , sk)

= pb(cI , t|sI) , as honest provers are no-signaling

= q(cI , t|sI , b) .

q(cI |s1, . . . , sk, b) =
∑
t

∑
ci,i/∈I

pb(c1, . . . ck, t|s1, . . . , sk)

= pb(cI |sI) , as honest provers are no-signaling

= p1−b(cI |sI) , as Com is perfect hiding

= q(cI |sI) .

Thus, the strategy is indeed no-signaling. Let us now prove that it breaks the binding property with
probability 1.

Prob(Acc|b) =
∑

s1,...,sk

p(s1, . . . , sk)
∑

c1,...,ck

∑
t

q(c1, . . . , ck, t|s1, . . . , sk, b)Acc(c1, . . . , ck, t|s1, . . . , sk, b)

=
∑

s1,...,sk

p(s1, . . . , sk)
∑

c1,...,ck

∑
t

pb(c1, . . . , ck, t|s1, . . . , sk)Acc(c1, . . . , ck, t|s1, . . . , sk, b)

= 1 , as Com is perfectly sound.
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This strategy also defines a valid probability distribution. Thus, there is no one round simple commitment
scheme with one opener which is perfectly hiding, perfectly sound and statistically binding against no-
signaling adversaries. ⊓⊔

D More on 4 prover bit commitments

D.1 Linear programming algorithm

Algorithm 1 Check Binding of Commitment Using LP

1: Input: Security parameter n
2: Generate all bitstrings S = {0, 1}n
3: Define decision variable P (a1, a2, a3, a4, s, b2, b3, b4, c4) ≥ 0
4: Initialize constraint list C ← ∅

▷ Normalization
5: for all s ∈ S and b2, b3, b4, c4 ∈ {0, 1} do
6: Add constraint:

∑
a1,a2,a3,a4

P (·|s, b2, b3, b4, c4) = 1 to C
7: end for

▷ No-signaling constraints across marginal views
8: for all appropriate marginals (e.g., a1, a2, a3, a1a2,a1a3, etc...) do
9: Add equality of marginals to C
10: end for

▷ Define objective function
11: Initialize objective← 0
12: for all s ∈ S, b ∈ {0, 1} do
13: for all a1 ∈ S do
14: t = XOR(a1, s · b)
15: for all a2 ∈ S do
16: a3 ← t⊕ a2

17: Add P (a1, a2, a3, a2, s, b, b, b, 0) to objective
18: Add P (a1, a2, a3, a3, s, b, b, b, 1) to objective
19: end for
20: end for
21: end for
22: Solve the LP: max objective subject to constraints C
23: Output: Optimal value of LP and whether binding is broken

D.2 Attack on commitment using secret sharing

Let us denote by checki,j the fact that the condition
ai−aj

ci−cj
= a1 + bi · s is satisfied. To break the binding,

one can consider the following strategy :

θ(a1, a2, a3, a4|s, c2, c3, c4, b2, b3, b4) =



1
q2 if b2 = b3 = b4 and check2,3, check2,4, check3,4
1
q3 if b2 = b3 ̸= b4 and check2,3
1
q3 if b2 = b4 ̸= b3 and check2,4
1
q3 if b3 = b4 ̸= b2 and check3,4

0 otherwise

Proposition 5. The strategy has value 1 and is no-signaling.

27



J. Guyot

Proof. Let us start by the value of this strategy on the binding game :

w(θ) =
∑
s

∑
c=(c2,c3,c4)

∑
b2,b3,b4

Prob(s, c, b2, b3, b4)
∑

a1,a2,a3,a4

θ(a1, a2, a3, a4|s, c, b2, b3, b4)Acc(θ(a1, a2, a3, a4|s, c, b2, b3, b4))

=
∑
s

∑
|{c2,c3,c4}|=3

∑
b

Prob(s, c2, c3, c4, b2, b3, b4)
∑

a1,a2,a3,a4 st check2,3, check2,4, check3,4

1

q2

=
∑
s

∑
|{c2,c3,c4}|=3

∑
b

Prob(s, c2, c3, c4, b2, b3, b4)
∑
a1,a2

1

q2
As fixing a1, a2 and asking the checks fixes a3, a4

=
∑
s

∑
|{c2,c3,c4}|=3

∑
b

Prob(s, c2, c3, c4, b2, b3, b4)

= 1 As those are the only queries the honest verifier makes

Let us now prove that this strategy is indeed no-signaling. Since this strategy is symmetric in a2, a3, a4
we will only show the marginals involving a1 and a2.

θ(a1|s, c2, c3, c4, b2, b3, b4) =
∑

a2,a3,a4

θ(a1, a2, a3, a4|s, c, b2, b3, b4)

=



∑
a2,a3,a4 st check2,3, check2,4, check3,4

1
q2 if b2 = b3 = b4∑

a2,a3,a4 st check2,3

1
q3 if b2 = b3 ̸= b4∑

a2,a3,a4 st check2,4

1
q3 if b2 = b4 ̸= b3∑

a2,a3,a4 st check3,4

1
q3 if b3 = b4 ̸= b2

=


q 1
q2 if b2 = b3 = b4

q2 1
q3 if b2 = b3 ̸= b4

q2 1
q3 if b2 = b4 ̸= b3

q2 1
q3 if b3 = b4 ̸= b2

=
1

q

= θ(a1|s)

θ(a1, a2|s, c2, c3, c4, b2, b3, b4) =
∑
a3,a4

θ(a1, a2, a3, a4|s, c, b2, b3, b4)

=



∑
a3,a4 st check2,3, check2,4, check3,4

1
q2 if b2 = b3 = b4∑

a3,a4 st check2,3

1
q3 if b2 = b3 ̸= b4∑

a3,a4 st check2,4

1
q3 if b2 = b4 ̸= b3∑

a3,a4 st check3,4

1
q3 if b3 = b4 ̸= b2

=


1
q2 if b2 = b3 = b4 as there is only once possible choice of a3, a4

q 1
q3 if b2 = b3 ̸= b4 as there is only once possible choice of a3 and q for a4

q 1
q3 if b2 = b4 ̸= b3 as there is only once possible choice of a4 and q for a3

q 1
q3 if b3 = b4 ̸= b2 as there are q possible choice of a3 and then it fixes a4

=
1

q2

= θ(a1, a2|s, c2, b2)

We could very similarly study the marginal of a2, a1, a2, a3, a2, a3, a2, a4, etc... and we would obtain that
this strategy is no-signaling.

⊓⊔
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