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1 OVERVIEW

1 Overview

General context

In 1994, Peter Shor described an algorithm solving the factorization and the discrete logarithm
problems in polynomial time on a quantum computer. This would mean that the commonly used
cryptosystems such as RSA would be broken. However for now, no quantum computer has enough
power to execute Shor’s algorithm and break those cryptosystems. Nevertheless, in a way to pre-
pare for this to happen, there had been a focus on what is called ”Post-Quantum Cryptography”. In
this way, in 2017 the NIST made a call for proposal aiming at developing new cryptographic standards.

Today, lattice-based cryptography seems to be the most mature solution. The structure of lattices
allows efficient cryptosystems, and the problems on which they rely seem to be quantum resistant.
Thus, 3 out of the 4 cryptosystems chosen by the NIST in 2022 are based on lattice problems.

Lattices have been widely studied, starting with ancient mathematicians such as Lagrange, Minkowski
and Gauss up to more recent scientists after Shor’s paper and the recent focus on it. The most studied
problem in lattices is the problem of finding a short vector, it is known as SVP and has been proved
to be NP-hard even up to approximation factors [Ajt98]. It is easy to see that the problem become
easier when the approximation factor gets larger. The following illustration shows the time complexity
of approximate SVP as the factor gets bigger.

Figure 1: Time complexity of approximate SVP depending on the approximation factor

Problem studied

Even if the Shortest Vector Problem has been well studied, its reduction to rotations of Zn known
as ZSVP is not as well known. It has been a long-standing open problem to determine if a polynomial-
time algorithm for ZSVP exists. At Eurocrypt 2023, an algorithm [BGPS23] was presented achieving
a better time complexity than in the general case. Ducas reached the same complexity with a different
approach [Duc23]. In fact, up until the two papers mentioned above, no speedup was known in the case
of rotations of Zn. Thus, by studying these two papers, the goal is to see if a better time complexity
can be achieved.

Proposed contribution

As the first paper relies on a chain of reduction that would be hard to enhance without changing
the whole method, I mostly focused my work on the second one [Duc23]. I did experiments on the
algorithm and studied its average running time. I proved a slightly better time complexity than what
was announced in the original paper. Furthermore, I designed algorithms that are expected to have a
better asymptotic running time but I could not prove it.

Field and limits of the contribution

This study illustrates the gap between the proven bounds in lattice reduction algorithm and the
effective bounds. I refined the theoretical bounds on the volume reduction factor in order to prove
a better running time. On its own, it is not a big result as I did not reduce the exponential factor
in the running time. However having a better volume reduction factor allows for more blocks in the
algorithms, thus reducing the exponent and leading to a significantly faster proven algorithm.
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2 BACKGROUND

Results and prospects

Overall, I studied the problem of finding a shortest vector in a rotation of Zn known as ZSVP, and
I proved a better running time on one of the existing algorithms. However, the major results concerns
the volume reduction factor, one parameter of the algorithm, on which I proved a better theoretical
bound. Further analysis could allow us to prove a better algorithm that actually works in practice and
is expected to have a better time complexity.

Finally, if such an algorithm is proven, we might be able to apply it to attack the HAWK cryp-
tosystem recently proposed at the NIST call for proposal 2023.

Meta-information

I first worked on the paper presented at Eurocrypt 2023 [BGPS23] but did not find an angle to
work on. I then focused my work on [Duc23] and spent roughly 2 weeks on it but only got some minor
results. I then tried to find new ways to solve ZSVP and worked on SDKBZ and Mordell’s inequalities,
the orthogonality of the basis and the Seysen reduction, but none of these approaches were successful.
Finally, I went back to the algorithm from [Duc23] and spent the rest of my internship on it, finally
getting some interesting results.

During this internship I went to Rennes University crypto seminar 4 times as it stopped in July,
and I went to the PEPR PQ-TLS project days in Paris about post-quantum cryptography.

I am still working with my supervisors on the problem of bounding the volume reduction factor as
it looks quite promising.

2 Background

Notations

• Let B “ tb1, ..., bnu be a basis, we will note B˚ the Gram-Schmidt basis of B, meaning that the
b˚
i are orthogonal.

• We will denote by πK
B the orthogonal projection on the space orthogonal to SpanpBq.

• Let B be a basis, we denote by Bi,j the set tbi, ..., bj´1u.

• Let B be a basis, we denote by Bri,js the set tπK
B0,i

pbiq, ..., π
K
B0,i

pbj´1qu, with Br0,js “ B0,j .

• Let S be a set, we denote by |S| its cardinal.

2.1 Lattices

A lattice is a discrete subgroup of Rm, m P N˚. Intuitively it can be seen as a vector space whose
linear combinations are made with integral coefficients, it is a Z ´ module. We will use L to refer to
a lattice, and B “ tb1, ..., bnu for its basis where the bi are linearly independent vectors of Rm.

L “ Lptb1, ..., bnuq “

n
ÿ

i“1

zibi zi P Z ,

The dimension/rank of a lattice is : DimpLq “ rgpLq “ DimpSpanpLqq where SpanpLq denotes
the vector space generated by the lattice. And for L Ă Rn if rgpLq “ n then L is called full-rank.
However, as opposed to free sets in a vector spaces, free sets in a lattice cannot always be completed
into a basis. And as the coefficients have to be integers, in general there is no orthogonal basis of the
lattice.
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2.2 Problems on lattices 2 BACKGROUND

Figure 2: A two dimensional lattice

Lattice Rotations

Let L be a lattice and B a basis of L. Then let us take O P OnpRq, the lattice LpOBq is called a
rotation of L. More generally, the rotations of L are tLpOBq, O P OnpRqu.

It is important to note that the rotation preserves the length and orthogonality of the vectors.
This can be explained by the fact that the rotation does not change the Gram matrix of the basis :
pOBqTOB “ BTB. This means that the rotations of Zn also have an orthonormal basis. Furthermore,
note that all results and proofs will be written assuming that L “ Zn, it still holds if L “ OZn, we
just need to write O everywhere needed in the proofs.

2.2 Problems on lattices

The two fundamental problems on lattices are finding a shortest non-zero vector in the lattice, and
given a vector in the space finding the closest lattice vector. Thus, short vectors are at the center of
the theory of lattice based-cryptography. Moreover, those problems are shown to be NP-hard under
randomized reductions [Ajt98]. Note that there is no uniqueness for a shortest vector as v and ´v
have the same length.

SVP ( Shortest Vector Problem ) : Given a lattice L, find v a non zero shortest vector of L.

CVP ( Closest Vector Problem ) : Given a lattice L and a vector w P Rm, find v P L minimizing
∥w ´ v∥.

Let us denote by λ1pLq the length of a shortest vector of L. As these problems are hard, relaxed
variants have been defined and studied such as

γ-SVP ( Approximate Shortest Vector Problem ) : Given a lattice L, find v a vector of L such that
∥v∥ ď γ λ1pLq.

Furthermore, there are also restriction of these problems to certain class of lattices, such as the
restriction to rotation of Zn.

ZSVP : Given a rotation of Zn L, find v a non zero shortest vector of L.

2.3 Mathematical notions on lattices

Volume and fundamental domain

A lattice does not have a unique basis, however as the coefficients of the change-of-basis-matrix
have to be in Z and invertible, we get that those matrices have determinant 1 or -1.

As the basis is not unique, one might like to find a parameter that only depend on the lattice and
not on the basis.
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2.3 Mathematical notions on lattices 2 BACKGROUND

(a) A fundamental domain (b) A lattice with good and bad basis

Definition 2.1. Let L be a lattice and B a basis of L. Then the volume of L is given by

V olpLq “ DetpLq “ |DetpBq| .

The volume is a lattice invariant of the basis, and represents the volume of what is called the
fundamental domain of the lattice, often denoted by F .

Good and bad basis

The hardness of the SVP and CVP problems is highly dependent on the basis we have for the
lattice. As can be seen in figure (b) above, having the blue basis makes it easier to find a short vector
than doing the same with the red one. Thus the terms ”good” and ”bad” basis.

One could see that the good basis has relatively short and orthogonal vectors. This will lead to the
creation of lattice reduction algorithms, which are algorithms aiming at transforming a bad basis in a
good one. The most famous one being the LLL algorithm [Len82] which runs in polynomial time but
returns exponentially large vectors. Furthermore, there are other algorithms running in exponential
time and achieving better bounds on the vectors of the basis. For example, the k-BKZ algorithm
achieves the bound k

1
2k V olpLq

1
n in time Opk

k
2e q.

Hermite’s constants and Gaussian heuristic

When looking at SVP, one might like to know how short is the shortest vector, meaning what
bound can be achieved. Minkowski proved that

λ1pLq ď
?
n V olpLq

1
n .

This bound is useful when working with short vectors of a lattice, however reduction algorithms
often work with another notion known as Hermite’s constants. These constants are defined as

γn “ sup
DimpLq“n

ˆ

λ1pLq

V olpLq
1
n

˙2

,

which leads to the Hermite’s bound :

@ L with dimpLq “ n, λ1pLq ď
?
γn V olpLq

1
n .

It has been showed that asymptotically, n
2πe ă γn ď 1.744n

2πe ` opnq which improves slightly on
Minkowski.

Finally, algorithms on lattices often use the Gaussian approximation which states that the number

of points of a full-rank lattice within S a measurable subset of Rn, is roughly V olpSq

V olpLq
.

Even though this approximation holds well for generic lattices, it does not work for Zn. This means
that we will not be able to use it directly, but we can still use it on random sublattice of Zn. To show
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2.4 Dual Lattice 2 BACKGROUND

why the heuristic does not hold on Zn, consider the intersection between this lattice and the closed
ball or radius 1 centered in 0. This ball has an asymptotic volume of p 2πe

n q
n
2 , and all the n unit vectors

are in it, thus giving

|Zn X Bf p0, 1q| “ n "

ˆ

2πe

n

˙
n
2

.

In fact Zn is a very unique lattice as is has an orthonormal basis. This rich structure is what gives
the intuition that faster algorithms should exist when working exclusively with rotations of Zn.

For further explanations on those notions there is an analysis of those bounds and parameters and
their link with reduction algorithms made in [Ngu10].

2.4 Dual Lattice

An important notion when working with lattices is the dual lattice. Let L be a lattice, its dual
lattice is defined as

L_ “ tv P SpanpLq | @ u P L, xv, uy P Zu .

The dual lattice is indeed a lattice, and has some close link with the primal lattice L.

Figure 4: A lattice and its dual

Some properties of the duality

1. Let α P R˚ then pαZnq_ “ 1
αZ

n .

2. Let L be a lattice, then V olpL_q “ 1
V olpLq

.

3. Let B be a basis of L then BpBTBq´1 is a basis of L_ .

4. SpanpLq “ SpanpL_q .

5. The dual of the dual is the primal : pL_q_ “ L .

6. LpBri,jsq
_ is a sublattice of LpBq_.

2.5 Lattice Algorithms

A more complete and detailed description of lattice algorithms can be found in 7.1.

The best exact SVP algorithm runs in Op2nq, where n is the dimension of the lattice. However,
when we want to solve approximate SVP, we can acutally go faster. Algorithms such as BKZ or SD-
BKZ use exact SVP algorithms as a subroutine. For example, the bound on SDBKZ [MW15] when

applying the exact SVP in dimension k is ∥b1∥ ď
?
γk

n´1
k´1 λ1pLq, achieved in OpPolypnq2kq.

Finally, in this work we will use the HKZ reduction algorithm. It works by taking a shortest vector
of the lattice, and then search a lattice vector whose projection on the hyperplane orthogonal to the
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2.6 What has been done on rotations of Zn ? 3 SOLVING ZSVP

previous vector is non zero and minimal among other lattice vectors. It then iterates this procedure,
taking a vector whose projection on the space orthogonal to the current basis is a shortest vector.
More formally, a basis is HKZ reduced if :

∥πK
B1,i

pbiq∥ “ λ1pπK
B1,i

pLqq ,

@ j ă i,

∣∣∣∣∣xbi, π
K
B1,j

pbjqy

∥πK
B1,j

pbjq∥2

∣∣∣∣∣ ă
1

2
.

2.6 What has been done on rotations of Zn ?

What I described above is in the case of general lattices, that can be quite complex and have less
structure than Zn. In fact, up until recently, the faster algorithm to solve the shortest vector problem
in Zn was the general algorithm. Even if Zn seems way simpler to manipulate than general lattices,
as it does not respect the Gaussian heuristic, it can be quite tricky.

In 2023, Benett and al. published a Op2
n
2 `opnqq algorithm for ZSVP [BGPS23]. This algorithm

uses a chain of reduction on various lattice problems. However it can be seen as : they transformed via
a clever sampling the rotation of Zn into a γ-Unique-SVP lattice for a well chosen γ, which means that
the lattice they obtained had λ2pLq ě γλ1pLq. Then, they used an algorithm solving p1.93 ` op1qq-
Unique-SVP in Op2

n
2 `opnqq via a reduction to another problem [LM09] [ADRS15]. This is a really

significant improvement compared to the best SVP algorithm in Op2nq.

In 2023 also, Ducas in [Duc23] designed an algorithm for ZSVP in the same time complexity but
using a different approach. This algorithm will be described and studied in the next section.

3 Solving ZSVP

Ducas in [Duc23] presented a two step algorithm solving ZSVP in Op2
n
2 q. The algorithm first takes

an odd n or add a dimension, and slices the basis in two blocks of size n
2 and n

2 ` 1. Once sliced,
it transforms the blocks until obtaining two blocks isomorphic to Zn

2 and Zn
2 `1. Finally applying

a classic SVP algorithm on those blocks returns an orthonormal basis of the lattice. The following
algorithms will also aim at finding such a basis as in the case of rotations of Zn, those problems are
equivalent. In fact you can use an HKZ once the blocks are orthogonal to get an orthonormal basis,
or an SVP to get only a shortest vector.

The reason for the choice of n
2 for the length of the blocks is that given k the length of the first

block, it costs Op2n´kq to make it orthogonal to the rest of the basis.

Remark. The algorithm uses an HKZ oracle once the blocks were obtained as the complexity of getting
those blocks is the same as an HKZ in dimension n

2 . However if one could get those blocks in a better
complexity, then continuing by induction until dimension one would be better. Thus, keeping the
complexity of the extraction of the blocks as the general complexity.

Remark. As the algorithm from [Duc23] returns a basis of the rotation, it answers the problem of
finding the isomorphism between L and Zn known as ZLIP where LIP is the Lattice Isomorphism
Problem. The general LIP is, given two lattices that are rotations of each other, find the rotation to
go from one to another. Currently, the best known algorithm solving LIP is in nOpnq. Using HKZ, we
can see that ZLIP and ZSVP are equivalent.

3.1 Detecting the blocks

In [Duc23], the volume is used to detect when blocks are isomorphic to Zn
2 . For this, it is proved

that when the volume of the first block is 1 then it is isomorphic, which explains why the goal is to
reduce the volume.
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3.2 Reducing the volume 4 A BETTER TIME COMPLEXITY

However this method could be applied to a much larger class of lattices. In fact, Ducas uses the fact
that the volume cannot go lower than one. If we see the situation in a more global way, he is looking
for the sublattice of dimension n

2 of minimal volume. Thus, this method should work on lattices that
have a known dimension m ă n such that sublattices of minimal volume of dimension m have their
orthogonal lattice within the lattice.

3.2 Reducing the volume

For now, we will consider the volume approach and this special case of a target sublattice with
minimal volume. It means that we now have to reduce the volume of the blocks.

The algorithm in [Duc23] uses the middle vector bn
2
as a pivot. A volume invariant transforma-

tions is applied to the n
2 ` 1 last vectors which reduces the length of the middle vector : SVP reduce,

meaning that the middle vector is the shortest vector of the lattice generated by the block. Then a
similar transformation is used on the n

2 ` 1 first vectors this time making the middle vector as large as
possible : DSVP reduce meaning that the SVP reduces the dual lattice of the block, thus, making the
middle vector quite large. At the end, one can show that the volume of the first block has decreased

by at least a factor
b

1 ´ 1
n .

There is a more visual representation of this volume reduction phase in 6.2.

3.3 Algorithm for αZSVP

Algorithm 1 is a slight modification of the algorithm [Duc23]. The only difference is the α in the
condition of the while. This could also be done by scaling αZn to Zn and scaling it back after, but this
shows that this manipulation is in fact useless as the algorithm works as well in the original lattice.

Algorithm 1 algorithm for αZSVP

Require: B basis of L, L rotation of αZn

Ensure: B basis of L with 1
αB orthonormal

α Ð V olpLq
1
2n

B Ð LLLpBq

Bk,2k`1 Ð Primal-SVP Reduce pBk,2k`1q

while V olpB0,k`1q ě
?
2α2k do

B0,k`1 Ð Dual-SVP Reduce pB0,k`1q

Bk,2k`1 Ð Primal-SVP Reduce pBk,2k`1q

end while
B1 Ð Primal-HKZ Reduce pB0,kq

B2 Ð Primal-HKZ Reduce pBk,2k`1q

return B

4 A better time complexity

From now on and until the end, all results are my contribution, the only exceptions being 6.1 which
is a detailed version of the proofs of [Duc23] and 7.1 which describes lattice algorithms.

4.1 Experimenting with more blocks

One could easily see that the complexity of the algorithm lies in the transformation from random
sublattice to Zk. And in this phase we are using an exact SVP algorithm on blocks of size k. The
first idea that comes to mind when we want to make it faster is to reduce k, which means cutting the
original basis into more blocks.

However, when cutting into more than 2 blocks, it is hard to see how we can prove an actual volume
reduction. In fact the strategy of the proofs in [Duc23] cannot be applied. Thus, we are not able to
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4.2 Studying the random lattice case 4 A BETTER TIME COMPLEXITY

prove that a similar algorithm will actually finish.

We experimented with some variants of the original algorithms working with 3 and 4 blocks in
dimension up to 120. The algorithm finished, and returned the expected output. This suggests that
more can be done on this problem. However, when increasing the number of blocks, the volume re-
duction factor increased too. It went from an average of 0.35 for 2 blocks, to 0.77 for 4 blocks, and it
became relatively frequent for the reduction factor to be bigger than 1. There is an example of what
the reduction factor can look like with 4 blocks in 6.2.

Furthermore, one can see that the effective volume reduction factor is extremely smaller than the

predicted bound of
b

1 ´ 1
n . In fact, this proved bound is a worst case bound. Thus, by making a

more refined analysis we could lower this bound.

If we are able to get better bounds on the volume reduction, then we might be able to prove that
the algorithm finishes even with more blocks. Thus, allowing a significant proven speedup. This is
why we will be working on a tight bound on the theoretical volume reduction.

4.2 Studying the random lattice case

It is known that the lattices generated by the first block are not random as they are converging
towards Zk. However, for the first iterations of the algorithm, they can be considered quite random.
For now, we will put those question on the side and focus on what we could achieve if we do have
random lattices.

Ajtai proved in [Ajt02] that in the case of random lattices, the shortest vector will follow the
Gaussian heuristic with high probability. Using the Gaussian heuristic on an n-dimensional lattice L

with volume V olpLq we expect a shortest vector of length λ1pLq “

´

V olpLq

Vnp1q

¯
1
n

, which is asymptotically

equal to
a

n
2πeV olpLq

1
n . This allows to write the following lemma, proved in 6.7.

Lemma 4.1. Let L be a random lattice, let us call r “
V olpLpB0,kqqnew

V olpLpB0,kqqold
the volume reduction factor

during one loop iteration. Then we have

Eprq “

ˆ

1

Vk`1p1qV olpLpB0,kqq

˙
1

k`1 p2´ 1
k`1 q

,

where Vnp1q is the volume of the n-dimensional ball of radius 1.

Thus, this reduction factor only has sense as long as V olpLpB0,kqq ą 1
Vk`1p1q

ą 1. This shows that

such a bound cannot be used until the end, even if we consider perfectly random lattices. As said
before, we will not be able to use this approach as we do not have random lattices, but we can have a
relatively close result.

4.3 Studying the slide reduction

The slide algorithm is a lattice reduction algorithm described in [GN08]. It works quite similarly as
what we just saw but with p blocks. The idea is to do multiple iterations of a round, each round being
composed of a primal round and a dual round. During the primal round, all blocks are SVP-reduced.
Whereas, during the dual round, the p´ 1 blocks obtained by shifting by 1 all the p´ 1 fist blocks are
DSVP-reduced.

The while loop we are using for the volume reduction is essentially a round of the slide reduction
process described in [GN08] with blocks of size n

2 , this is what the following lemma is about, and is
proven in 6.8.

Lemma 4.2. The volume reduction loop is a round of the slide algorithm.

9



4.4 Studying the red phase 4 A BETTER TIME COMPLEXITY

Figure 5: Visualisation of the slide algorithm

Figure 6: Volume reduction steps

The idea is to extend the ambient space to Zn`1 and add at the beginning of the basis a vector
b̄ “ p0, ..., 0, αq with α ă 1. We can then prove that a loop of the slide algorithm with blocksize n`1

2
is the same as our volume reduction loop.

Using the bounds proven in [Wal20] for the slide reduction we can show that once the basis is LLL
reduced, it takes Opn logpnqq iterations of the loop to reach a volume of 2

n
2

?
γn

2

n
2 . Once this volume

is reached, we can apply the classic bound proven before. Using the asymptotic formula of γn
2
gives

us that this volume is in Op2n logpnqq. This means that going from this volume to 1 takes at most
Opn2 logpnqq iterations when we use the proven worst case volume reduction factor. Thus, giving the
theorem below, proved in 6.9.

Theorem 4.3. The volume reduction phases finishes in at most Opn2 logpnqq iterations.

In fact, the bounds from the slide reduction are close to the one we obtain using the Gaussian
heuristic. Meaning that the general behavior until a volume of Op2n logpnqq is roughly the same. This
explain why we use the formula from this approach in the visualisation. Thus, the red curve is only
here to give a rough idea of how the theoretical volume reduction factor evolves over the iterations.

When applying the algorithm with n “ 80 we get the graphs 7, where the abscissa is the number of
iterations and the ordinate is the volume reduction factor. The blue curve corresponds to the effective
volume reduction factor whereas the red is for the theoretical one.

Using the bounds from the slide reduction, we were able to greatly reduce the theoretical volume
reduction factor in what we call the green phase : where the volume of the first block is bigger than
Op2n logpnqq. The second part, called the red phase, is more complex and for now we only have the
worst case bound.

4.4 Studying the red phase

The goal here is to reduce the theoretical volume reduction factor when the lattice is relatively
close to Zk. Furthermore, the Gaussian heuristic or Minkowski’s bounds cannot be used here.

We will use a new method inspired by Johnson-Lindenstrauss lemma : we will bound the length
of the shortest vector in the projected block by the length of the shortest non zero projection of an
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4.5 Algorithm on p blocks 4 A BETTER TIME COMPLEXITY

(a) Average volume reduction factors during the
loop iterations. (b) Distribution of the volume reduction factors.

Figure 7: Comparison between effective and theoretical volume reduction factor during the loop iter-
ations

unit vector. Johnson-Lindenstrauss lemma states that the length of unit vector projected on a random

k-dimensional vector space will be roughly
b

k
n . However we will not use it in this way. In fact, we will

show that for every k-dimensional subset that is not generated by k canonical vectors ei, there is a ei

with a non-zero projected norm smaller than
b

k´|S|
n´|S|´|SK| , where S “ tei P W u and SK “ tei P WKu

where WK is the space orthogonal to W .

Theorem 4.4. Let W be a k-dimensional space with W Ă Rn, W ‰ Rk. Let S “ tei P W u and

SK “ tei P WKu where WK is the space orthogonal to W . Then 0 ă mineiRWK∥πW peiq∥2 ď
k´|S|

n´|S|´|SK| .

The proof of the theorem uses the fact that a k-dimensional subspace W can be represented by
pQ, Jq with Q P OnpRq and J a subset of k elements of t1, ..., nu. This way, W is generated by the
columns of Q with indexes in J . And using the properties of columns of Q we get the results.

Remark. The condition W ‰ Rk is only here to ensure that the right column of the block matrix
exists.

This theorem, proved in 6.11, allows a better bounding on the shortest vector in the projection
as we are bounding the projection of the unit vectors. However, it comes with the price of studying
S “ tei P W u and SK “ tei P WKu. In the case of 2 blocks, we might be able to use a little symmetry
trick to bound |S| ´ |SK|. The idea is to say that they are roughly equal, this conjecture is further
developed in 6.12 and might lead to a proof of Eprq ď 1

2 with high probability.

4.5 Algorithm on p blocks

As mentioned before, we can design variant of the algorithm working with more than 2 blocks.
After reading 4.3 it is easy to see that the intuitive extension is the slide algorithm applied to p blocks.
This gives algorithm 3 that is written in annex 6.4 in pseudo-code and illustrated by a schematic
representation. This allows us to use the bounds of the slide algorithm in the green phase, making the
analysis easier.

This algorithm actually works when used in dimension 120 with blocks of size 30 or 40. One thing
that should be noted is that even if it finishes, there are some rare execution of the loop where the
volume of the first block does not decrease and might increase. Thus, we need to evaluate the expected
volume reduction factor and not the worst case. It is relatively easy to see that the more blocks there
are, the bigger the expected volume reduction factor is, and eventually it will be bigger than one with
too many blocks.

11



5 CONCLUSION

Let us call rki the volume reduction factor between the blocks i and i` 1 with block-size k, Bk
i the

ith block of B and BkK
i “ πK

Bk
1 ,...,B

k
i´1

pBk
i q the ith block projected on the orthogonal of the i ´ 1 first

blocks. Let D be the reversed dual basis of B, and let n “ pk. We get

rki “ λ1pLpBkK
i`1qq λ1pLpDkK

p´iqq for 1 ď i ď p ´ 1 .

Thus, the goal of future studies, will be to find or bound

κn “ max
1ďkďn

´n

k
| Eprk1 q ă 1

¯

.

Remark. Intuitively, we are taking the maximum number of blocks p “ n
k for which we can prove the

volume reduction.
The real condition is in fact 1´Eprk1 q not negligible compared to n as we want a polynomial number

of iteration of the loop.

The reason why we are only considering rk1 is that one we get that LpBk
1 q is isomorphic to Zk, we

can apply HKZ on it, and return k shortest vectors. As mentioned before in the case of Zn getting a
shortest vector and an orthonormal basis is equivalent.

Finally, by taking κ “ infnPN˚ pκnq, we get that there is an algorithm finishing in time Op2
n
κ q with

high probability.

Remark. The paper [Duc23] actually proves κ ě 2.

To sum up, by studying rki the same way we studied r in the previous parts, and getting better
theoretical bounds on it, we might be able to prove a bigger κn, which would lead to a bigger κ. Thus
we would get a faster algorithm for ZSVP.

5 Conclusion

The problem of finding a shortest vector in a rotation of Zn is a relatively young problem. It could
be useful to know if this problem is actually hard or not. If it is hard, we would be able to come up
with efficient cryptographic schemes using the structure of Zn to have faster computation and smaller
keys.

In fact, it has been a long standing problem to determine if a polynomial algorithm could solve
this problem. However before this year, little had been discovered. Then two papers were published
[BGPS23][Duc23] and actually found a way to solve ZSVP in Op2

n
2 q which is significantly faster than

solving SVP (best algorithm in Op2nq). Thus, my work aimed at understanding the problem and
finding a speedup based on these two papers.

Even if for now I did not came up with a significant proven speed up, the various experiments I
did with the variants of the algorithm with more than two blocks suggests that those variants actually
work with a probability depending on the number of blocks. The work I did on the bounding of the
volume reduction factor, aims at proving that those algorithms finish and find the bigger number of
blocks such that it finishes.

With further study, we could find this number of blocks, and prove a significantly faster algorithm
that finishes with high probability. However, for this, we need to study the expected volume reduction
factor when we have more blocks which seems harder than for 2 blocks.

This internship allowed me to discover the world of research, and lattice-based cryptography. I
really enjoyed working on this subject and consolidated the idea that I am really interested in cryptog-
raphy and in research. It also made me curious about quantum algorithmic as we are trying to build
quantum secure schemes.

Finally I would like to thanks Pierre-Alain Fouque and Alexandre Wallet for their guidance and
help during those 2 months, as well as the CAPSULE team and the personnel of IRISA. It was an
extremely enjoyable experience and I am already looking forward to my next internship.
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[HS07] Guillaume Hanrot and Damien Stehlé. “Improved Analysis of Kannan’s Shortest Lattice
Vector Algorithm”. In: Advances in Cryptology - CRYPTO 2007. Ed. by Alfred Menezes.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 170–186. isbn: 978-3-540-74143-
5.

[Kan83] Ravi Kannan. “Improved Algorithms for Integer Programming and Related Lattice Prob-
lems”. In: Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing.
STOC ’83. New York, NY, USA: Association for Computing Machinery, 1983, pp. 193–
206. isbn: 0897910990. doi: 10.1145/800061.808749. url: https://doi.org/10.1145/
800061.808749.

[Len82] Lovász L. Lenstra H.W. jr. Lenstra A.K. “Factoring Polynomials with Rational Coeffi-
cients.” In: Mathematische Annalen 261 (1982), pp. 515–534. url: http://eudml.org/
doc/182903.

13

https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1109/SFCS.2002.1181998
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://arxiv.org/abs/2007.09556
https://doi.org/10.1007/978-3-031-30589-4\_9
https://doi.org/10.1007/978-3-031-30589-4\_9
https://doi.org/10.1007/978-3-031-30589-4%5C_9
https://eprint.iacr.org/2023/447
https://eprint.iacr.org/2023/447
https://eprint.iacr.org/2023/447
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/800061.808749
http://eudml.org/doc/182903
http://eudml.org/doc/182903


REFERENCES REFERENCES

[LM09] Vadim Lyubashevsky and Daniele Micciancio. “On Bounded Distance Decoding, Unique
Shortest Vectors, and the Minimum Distance Problem”. In: Advances in Cryptology -
CRYPTO 2009. Ed. by Shai Halevi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 577–594. isbn: 978-3-642-03356-8.

[MW15] Daniele Micciancio and Michael Walter. Practical, Predictable Lattice Basis Reduction.
Cryptology ePrint Archive, Paper 2015/1123. https://eprint.iacr.org/2015/1123.
2015. url: https://eprint.iacr.org/2015/1123.

[Ngu10] Phong Q. Nguyen. “Hermite’s Constant and Lattice Algorithms”. In: The LLL Algorithm:
Survey and Applications. Ed. by Phong Q. Nguyen and Brigitte Vallée. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 19–69. isbn: 978-3-642-02295-1. doi: 10.1007/978-
3-642-02295-1_2. url: https://doi.org/10.1007/978-3-642-02295-1_2.

[Wal20] Michael Walter. The Convergence of Slide-type Reductions. Cryptology ePrint Archive,
Paper 2020/1409. https://eprint.iacr.org/2020/1409. 2020. doi: 10.1007/978-3-
030-75245-3_3. url: https://eprint.iacr.org/2020/1409.

14

https://eprint.iacr.org/2015/1123
https://eprint.iacr.org/2015/1123
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-3-642-02295-1_2
https://doi.org/10.1007/978-3-642-02295-1_2
https://eprint.iacr.org/2020/1409
https://doi.org/10.1007/978-3-030-75245-3_3
https://doi.org/10.1007/978-3-030-75245-3_3
https://eprint.iacr.org/2020/1409


6 ANNEX

6 Annex

6.1 Algorithm from DUC23 and proof

This subsection is not original work, it is only here to help with the understanding of the algorithm,
all proofs are from [Duc23], with the only modification being the coefficient α, and some more details
in the proofs. In this way the proof is made for algorithm 1, but replace

?
2α2k by 1 and and α by 1

if you want the proof for 2.

The following algorithm was proposed in [Duc23] and actually solves ZSV P in Op2
n
2 q.

Algorithm 2 Algorithm from Ducas

Require: B basis of L, L rotation of Zn

Ensure: B orthonormal basis of L
B Ð LLLpBq

Brk,2k`1s Ð Primal-SVP Reduce pBrk,2k`1sq

while V olpB0,k`1q ą 1 do
B0,k`1 Ð Dual-SVP Reduce pB0,k`1q

Brk,2k`1s Ð Primal-SVP Reduce pBrk,2k`1sq

end while
B0,k Ð Primal-HKZ Reduce pB0,kq

Brk,2k`1s Ð Primal-HKZ Reduce pBrk,2k`1sq

return B

We now want to prove the correction and the termination of the algorithm. This is why we in-
troduce those lemmas. The first one is for ”detecting the block” to see if we finished the operation.
While the other two are for the volume reduction.

Lemma 6.1. Let L Ă αZn, rgpLq “ k. Then V olpLq
2

α2k P N˚ , and if V olpLq2 “ α2k Then L is

isomorphic to αZk

Proof of 6.1. For the first point, let B be a basis of L. This means that B “ αB1 with B1 basis of Zn.
Thus

V olpLq2 “ DetpBTBq “ α2kDetpB1TB1q .

However, B1 is a basis of Zn, which means that DetpB1TB1q P N˚. Hence V olpLq
2

α2k P N˚.

For the second point, let us consider B1 in its Hermite normal form : i.e. B1 “ UBH , BH “

„

X
Y

ȷ

,

where U is a rotation matrix, and X is lower triangular such that all the lower coefficients are positive
integers and smaller than the one on the diagonal : @i ď n, @j ď i, 0 ď Xri, js ă Xri, is.

Furthermore, writing λi for the eigenvalues of BT
HBH , and by using the Courant-Fischer [CFL28]

[Fis05] theorem which can be used as BT
HBH is symmetric and real, stating that in this case

λi “ max
V ĂRk, dimpV q“i

t min
xPV, ∥x∥“1

txBT
HBx, xyuu ,

we get

DetpB1TB1q “ DetpBT
HBHq “

ź

iďk

λi “
ź

iďk

max
V ĂRk, dimpV q“i

t min
xPV, ∥x∥“1

txBT
HBx, xyuu .

Then, using BT
HBH “ XTX ` Y TY and the fact that Y TY is symmetric and positive gives us
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6.1 Algorithm from DUC23 and proof 6 ANNEX

DetpB1TB1q “
ź

iďk

max
V ĂRk, dimpV q“i

t min
xPV, ∥x∥“1

txXTXx, xy ` xY TY x, xyuu

ě
ź

iďk

max
V ĂRk, dimpV q“i

t min
xPV, ∥x∥“1

txXTXx, xyuu

“ DetpXTXq .

However, 0 ă DetpXTXq because of the Hermite normal form.
And as V olpLq2 “ α2k, we get

DetpB1TB1q “
V olpLq2

α2k
“ 1 .

This then leads to
0 ă DetpXTXq ď DetpB1TB1q “ 1 .

However, DetpXq “
ś

iďk Xri, is and Xri, is P N˚.

Meaning that DetpXq P N˚, and DetpXq “ 1. Thus,

@i ď n, Xri, is “ 1

@j ă i ď n, Xri, js “ 0 .

Concluding the fact that X “ Ik.

A useful property is that Ik and Y are simultaneously diagonalizable.
Calling µi the eigenvalues of Y TY , one can deduct than λi “ 1 ` µi. And as Y TY is symmetric,

@i ď k, µi ě 0.

Finally,

detpBT
HBHq “

ź

iďk

λi “
ź

iďk

1 ` µi “ 1 .

Hence, @i ď k, µi “ 0 and so Y “ OMk,n´kpRq.

Meaning that LpB1q is isomorphic to Zk and L is isomorphic to αZk.

Lemma 6.2. Let L Ă αZn, rgpLq “ k, such that k ă n, and let L1 “ πK
LpαZnq.

Then λ1pL1q ď α.

Proof of 6.2. Let L Ă αZn, rgpLq “ k, such that k ă n and let L1 “ πK
LpαZnq.

As k ă n, Dj ď n such that ej R L where ei are the vectors of the canonical basis of Zn.
Thus πK

Lpejq P L1 and
0 ă

∥∥πK
Lpαejq

∥∥ ď ∥αej∥ “ α .

Finally, λ1pL1q ď α.

Lemma 6.3. Let L Ă αZn, rgpLq “ k, such that V olpLq2 ą α2k, and let L1 “ πK
LpαZnq.

Then λ1pL1q ď α
b

1 ´ 1
n .

Proof of 6.3. Let L Ă αZn, rgpLq “ k, such that V olpLq2 ą α2k, and let L1 “ πK
LpαZnq.

Consider B an HKZ reduced basis of L. This means that @i ď n, Bri,ns is SVP-reduced.

As V olpLq2 ą α2k, Dbi in the basis of L such that @j ď n, bi ‰ αej .
Let i0 be the minimal index in that case. As L Ă αZn, ∥αbi0∥ ě α.
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6.1 Algorithm from DUC23 and proof 6 ANNEX

Hence, as B is HKZ reduced, @ αej P L, bi0 K ej . Thus,

bi0 “
ÿ

αejRL
αvjej .

Let vj0 “ maxαejRL vj , This leads to

∥bi0∥8 “ αvj0

xbi0 , αej0y “ α ∥bi0∥8 .

And as ej0 R L,

0 ă
∥∥πK

Lpαej0q
∥∥

ď

∥∥∥πK
bi0

pαej0q

∥∥∥
“

∥∥∥∥∥αej0 ´
xbi0 , ej0y

∥bi0∥
2 bi0

∥∥∥∥∥ .

This means by applying the polar identity on the last line that,

∥∥πK
Lpαej0q

∥∥2 ď ∥αej0∥
2

`

∥∥∥∥∥xbi0 , ej0y

∥bi0∥
2 bi0

∥∥∥∥∥
2

´ 2xαej0 ,
xbi0 , αej0y

∥bi0∥
2 bi0y

“ α2 `
xbi0 , αej0y2

∥bi0∥
2 ´ 2

xbi0 , αej0y2

∥bi0∥
2

“ α2 ´
xbi0 , αej0y2

∥bi0∥
2

“ α2p1 ´
∥bi0∥8

∥bi0∥

2

q

ď α2p1 ´
1

n
q .

Thus λ1pL1q ď α
b

1 ´ 1
n .

Lemma 6.4. Let L Ă αZn rgpLq “ k, then V olpLLLpL1qq ď αk2
n2

2 .

Proof of 6.4. First of all,

V olpLq “

2k
ź

i“0

∥b˚
i ∥ ,

where b˚
i refers to the coefficients of the Gram-Schmidt orthogonalization.

One property of the LLL algorithm is that

@i, 0 ď i ă 2k, ∥b˚
i ∥

2
ď

1

2

∥∥b˚
i`1

∥∥2 .

Hence,

V olpL1q “

k´1
ź

i“1

∥b˚
i ∥ ď

k´1
ź

i“0

2iα .

Thus leading to

V olpL1q ď αk2kpk`1q ď αk2
n2

2 .
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6.1 Algorithm from DUC23 and proof 6 ANNEX

Theorem 6.5. Algorithm 1 terminates with at most Opn3q iterations of the loop

Proof of 6.5. Let us take n an odd number and write it n “ 2k`1, if n is even, we just add a dimension.

If before the while loop, V olpLpB0,kqq ă
?
2α2k then the algorithm finishes.

Else, let us consider Brk,2k`1s “ πK
LpB0,kq

pBk,2k`1q. Then Brk,2k`1s is a basis of πK
LpB0,kq

pαZnq. To

see this, let us take y a vector in this space. Then there is a vector x in αZn such that πK
LpB0,kq

pxq “ y.

As B is a basis of αZn, we can write x as x “
ř2k`1

i“0 xibi. This leads to

y “ πLpB0,kq

˜

2k`1
ÿ

i“0

xibi

¸

“

2k`1
ÿ

i“0

xiπLpB0,kqpbiq “

2k`1
ÿ

i“k

xiπLpB0,kqpbiq .

Finally, we get that Brk,2k`1s is a basis of πK
LpB0,kq

pαZnq. This allows to apply 6.3 on LpB0,kq,

which shows that λ1pLpBrk,2k`1sqq ď α
b

1 ´ 1
n .

Thus, at the beginning of the loop ∥b˚
k∥ ď α

b

1 ´ 1
n , and b˚

k is orthogonal to LpB0,kq. If we denote

V olpLpB0,kqq at the beginning of the loop by V1, it leads to

V olpLpB0,k`1qq “ ∥b˚
k∥V1 .

Furthermore, Dual-SVP reduced means that the basis of the dual is SVP reduced. To make things
easier, we will consider the reversed dual basis, meaning that we will have dk as the shortest vector.
One thing to note is that the Gram-Schmidt orthogonalisation process gives

b˚
k “

dk

∥dk∥2
.

We now want to apply 6.2 to get that λ1pLpB0,k`1q_q ď 1
α . However, for this we need to prove

that LpB0,k`1q_ is the projection of a sublattice of 1
αZ

n.

One can prove that a projection in the primal lattice is a section of the dual lattice. Formally,
when B is a basis of the primal and D is a reversed dual basis td2k, ..., d0u, it can be formulated as

LpBrl,...,rsq
_ “ LpπK

d2k,...,dr`1
ptdr, ..., dluqq .

Thus pLpB0,k`1qq_ “ LpπK
d2k,...,dk`1

ptdk, ..., d0uqq. Which means with sL “ Lptd2k, ..., dk`1uq that

LpB0,k`1q_ “ πK
sLp

1

α
Znq ,

with sL a sublattice of 1
αZ

n.

Thus, when we write rD, rB the new basis,
∥∥∥Ădk

∥∥∥ ď 1
α which leads to

∥∥∥ rb˚
k

∥∥∥ ě α.

The SVP reduction consists of taking a shortest vector of the lattice and then complete the basis.
As the volume is preserved during an SVP reduction, V olpLpB0,k`1qq has not changed. Hence,

V olpLpB0,k`1qq “ ∥b˚
k∥V1 “

∥∥∥ rb˚
k

∥∥∥ĂV1 ,

with ĂV1 referring to the new volume of LpB0,kq. Thus

ĂV1 “ V1
∥b˚

k∥∥∥∥ rb˚
k

∥∥∥ ď V1

α
b

1 ´ 1
n

α
“ V1

c

1 ´
1

n
.

This shows that each iteration of the loop decreases the volume by a factor at least
b

1 ´ 1
n .
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6.2 Visualisation of volume reduction 6 ANNEX

After the application of the LLL algorithm, as proved in annex, V olpLpB0,kqq ď αk2
n2

2 and the while

loop finishes when V olpL1q ď αk. Thus the number of iterations of the while loop is in Op
plogp2

n2

2 q

logp
?

1´ 1
n q

q “

Op
n2 logp2q

2
1
2 logp1´ 1

n q
q “ Opn3q.

Theorem 6.6. Algorithm 1 returns an orthonormal basis of a rotation of Zn.

Proof of 6.6. Let L be a lattice, such that L Ă αZn.
At the end of the While loop, V olpLpB0,kqq ă

?
2α2k, thus

0 ă
V olpLpB0,kqq2

α2k
ă 2 .

However, by 6.1, as

LpB0,kq Ă αZn V olpLpB0,kqq2

α2k
P N˚ ,

this means that
V olpLpB0,kqq2 “ α2k .

Using 6.1 once again, LpB0,kq is isomorphic to αZk. Finally, applying the HKZ algorithm to B0,k

gives us the canonical basis of αZk. This means that LpBrk,2k`1sqq is now isomorphic to αZk`1. And
by applying HKZ on it too, we obtain a canonical basis of L.

Thus Algorithm 1 returns B a basis of L such that 1
αB is orthonormal.

6.2 Visualisation of volume reduction

The 2 blocks volume reduction

The volume reduction phase can be a bit tricky to fully understand. The following illustrations
aim at making it more visual. The exact scale or value is not what we focus on, as well as the slope.
We only aim at giving a rough intuition of how this volume reduction works.

Figure 8: After LLL
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6.3 Proofs of better complexity 6 ANNEX

After the LLL phase, the basis vectors have bounded length and it is the same for the Gram-Schmidt
vectors. The reason for the positive slope comes from Lovasz condition in the LLL algorithm

∥b˚
i`1∥2 ě p

3

4
´ µ2

i,i`1q∥b˚
i ∥2 ě

1

2
∥b˚

i ∥2

Figure 9: After SVP

The SVP reduction of the last n`1
2 vectors consists of getting b a shortest vector of the lattice

generated by B
r
n´1
2 ,ns

, lifting it in Bn´1
2 ,n. Then we consider the basis we had : Bn´1

2 ,n and the new

vector b. And we transform this generating set into a basis with first vector b. For this we can use
LLL on b

Ť

Bn´1
2 ,n.

We have that logpV olpLpBn´1
2 ,nqqq “

ř

n´1
2 ďiďn logp∥b˚

i ∥q. As this transformation does not change

the volume of the block, the area under the curve for block 2 remains the same. Thus the n´1
2 last

vectors become larger.

The DSVP reduction consists of a SVP reduction of the dual lattice. By applying it, we get a large
∥b˚

n´1
2

∥. Once again, the volume remains the same for block B0,n`1
2
, which means that the volume of

the block B0,n´1
2

decreases.

About the volume reduction factor with more than 4 blocks

It appears that until a certain threshold the volume reduction factor behaves as we would expect
it : meaning that it gets bigger when the volume decreases. However, at around half of the iterations
it starts decreasing. We do not know why it happens but this behavior appeared in every tests with 4
blocks. It should also be noted that it also appeared in tests with 3 blocks.

The second graph represent the volume of the blocks, the blue curve correspond to the block
containing the k first vectors. It illustrates this surprising behavior.

6.3 Proofs of better complexity

Lemma 6.7. Let L be a random lattice, then we have

Eprq “

ˆ

1

Vk`1p1qV olpLpB0,kqq

˙
1

k`1 p2´ 1
k`1 q

,
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Figure 10: After DSVP

where Vnp1q is the volume of the n-dimensional ball of radius 1.

Proof. During a single iteration of the while loop, we perform an SVP reduction and an DSVP reduc-
tion in dimension k ` 1.

Using the Gaussian heuristic on Brk,2k`1s, we have

Epλ1pLpBrk,2k`1sqqq “

c

k ` 1

2πe
V olpLpBrk,2k`1sqq

1
k`1 “

c

k ` 1

2πe

1

V olpLpB0,kqq
1

k`1

.

In the same way, using it for the DSVP gives asymptotically

Epλ1pLpBr0,k`1sq
_qq “

c

k ` 1

2πe
V olpLpB0,k`1q_q

1
k`1 “

c

k ` 1

2πe

ˆ

1

V olpLpB0,kqqEpλ1pLpBrk,2k`1sqqq

˙
1

k`1

.

We denote as Vold and Vnew the volume V olpLpB0,kqq before and after the loop iteration. The
formula for the volume reduction can be formulated as :

Eprq “ E
ˆ

Vnew

Vold

˙

“ Epλ1pLpBrk,2k`1sqqqEpλ1pLpBr0,k`1sq
_qq

“ Epλ1pLpBrk,2k`1sqqq
2´ 1

k`1

This ratio is still the same even when we consider the exact volume of the n-dimensional ball of
radius 1 instead of its asymptotic volume.

This gives :

Eprq “

ˆ

1

Vk`1p1qV olpLpB0,kqq

˙
1

k`1 p2´ 1
k`1 q

.

Lemma 6.8. The volume reduction loop is a round of the slide algorithm.
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(a) Evolution of the volume reduction factor during
the iterations of the loop for 4 blocks in dimension
120 (b) Volume of the blocks

Figure 11: volume reduction factor of first block and volume evolution with 4 blocks in dimension 120

Proof. The while loop of the algorithm is in fact the loop from the slide reduction applied to a slightly
modified basis. Let B be a basis of Zn, we will add an artificial dimension and extend those vectors
with a 0. Then consider b̄ “ p0, ..., 0, αq, we get that b̄ is orthogonal to SpanpBq. Furthermore, if
α ă 1, then we get that λ1pLprb̄|B0,ksqq “ α. This means that rb̄|B1s is SVP-reduced.

We now apply the slide reduction algorithm to the new basis, with blocks of size n
2 “ k ` 1.

First we SVP-reduce rb̄|B0,ks, which does not change anything. Then we SVP-reduce Brk,2k`1s, just
as in the regular volume reduction loop. After this, we DSVP reduce B0,k`1 which is again what we are
doing in the algorithm. This means that our while loop is in fact a round of the slide reduction on rb̄|Bs.

Finally, as b̄ is orthogonal to B0,k and does not change in the algorithm, we get that V olpLpB0,kqq “
1
αV olpLprb̄|B0,ksqq. This means that the volume analysis from the slide algorithm holds on B0,k. Thus,
we can actually use the proven bounds from the slide reduction.

Theorem 6.9. The volume reduction phases finishes in at most Opn2 logpnqq iterations.

Proof. First we need to prove that we can actually reach the volume 2
n
2

?
γn

2

n
2 in ′pn logpnqq iterations.

To prove this we will use Corollary 1 from [Wal20] section 3.2,with (using the notations from the paper)
d “ n`1

2 , k “ 1 as we have regular SVP, which implies α “
?
γk`1 and we chose ϵ “ 1.

Using this corollary, after

l ě
n2

4n´3
2

log

¨

˝

n2

n´1 ` n3

4p
n´1
2 q3

logpαqq

ϵ

˛

‚“ Opn logpn ` logpnqqq “ Opn logpnqq

iterations, we have V olpB0,k`1q ď 2
n
2

?
γn

2

n
2 “ Op2n logpnqq.

Now that we reached this volume, by applying the worst case bound, we can go from Op2n logpnqq

to 1. It will takes us at most logp2n logpnq
q

logp 1?
1´1{n

q
“ Opn2 logpnqq iterations.

Thus, the total number of iterations needed to go to a volume of 1 is at most Opn2 logpnqq.

Lemma 6.10. Let W be a k-dimensional space with W Ă Rn. Then miniďn∥πW peiq∥2 ď k
n .

Proof. Let us prove this by contradiction. Let us assume that there is a subspace of Rn W such that
for all i ď n, ∥πW peiq∥2 ą k

n .
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We can take an orthonormal basis for W using the Gram-Schmidt orthogonalisation process. And
we can complete this set into an orthonormal basis of Rn. This gives us a matrix Q P OnpRq and
J Ă t1, ..., nu of cardinal k, such that W is generated by the vectors pbjqjPJ .

Let i ď n, using the properties of Q, we now have

∥πW peiq∥2 “ ∥
ÿ

jPJ

xei, qjy

∥qj∥2
qj∥2 “

ÿ

jPJ

q2i,j .

By hypothesis on W , we get
ř

1ďiďn∥πW peiq∥2 ą
ř

1ďiďn
k
n ą k.

However, using the fact that Q forms an orthonormal basis, we can deduce
ÿ

1ďiďn

∥πW peiq∥2 “
ÿ

1ďiďn

ÿ

jPJ

q2i,j “
ÿ

jPJ

1 “ k .

This is absurd, which means that such a W cannot exist. Thus, for every k-dimensional subspace
W , there is a unit vector ei such that ∥πW peiq∥2 ď k

n .

Theorem 6.11. Let W be a k-dimensional space with W Ă Rn, W ‰ Rk. Let S “ tei P W u and

SK “ tei P WKu where WK is the space orthogonal to W . Then 0 ă mineiRWK∥πW peiq∥2 ď
k´|S|

n´|S|´|SK| .

Proof. Let us write W the same way as in the proof of 6.10. We can thus write W as

W “

»

–

I|S| 0|S|,k´|S|

0n´|S|´|SK|,|S| ˚

0|SK|,|S| 0|SK|,k´|S|

fi

fl ,

which helps us show that

n´|SK|
ÿ

i“|S|`1

k
ÿ

j“|S|`1

∥πW peiq∥2 “ k ´ |S| .

Thus, we have 0 ă mineiRWK∥πW peiq∥2 ď
k´|S|

n´|S|´|SK| .

Theorem 6.12. conjecture ! not formally proven
Let r be the volume reduction factor, then Eprq ď 1

2 .

Proof. Idea behind the conjecture
Let us consider a basis B of Zn on which we will apply the algorithm.

From the previous analysis, we get that

Eprq “ Epλ1pLpBrk,2k`1sqqqEpλ1pLpB0,k`1q_qq “ Epλ1pπK
B0,k

pZnqqqEpλ1pπK
B_

rk,2k`1s
pZnqqq .

We now want to bound Epλ1pπK
B0,k

pZnqqq.

Let us denote by Si,j “ tei P SpanpBi,jqu, and by Sri,js “ tei P SpanpBri,jsqu.

Using 6.11, we get that when LpB0,kq is not isomorphic to Zk,

min
eiRS0,k

∥πK
B0,k

peiq∥2 ď
k ` 1 ´ |Srk,2k`1s|

n ´ |Srk,2k`1s| ´ |S0,k|
.

However, by property of the dual, Srk,2k`1s “ tei P SpanpBrk,2k`1squ “ tei P SpanpBrk,2k`1s_qu.

And LpBrk,2k`1sq_ is a sublattice of Zn because a projection in a primal is a section in the dual.
And it has the same volume as LpB0,kq. Furthermore, the transformations are the same on both
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(a) Mean of |S0,k| and |Srk,2k`1s| during the loop
iterations

(b) Distribution of |S0,k| and |Srk,2k`1s| during the
loop iterations

(c) Evolution of |S0,k| ´ |Srk,2k`1s| during the loop
iterations

Figure 12: Evolution of |S0,k| and |Srk,2k`1s| during the loop iterations

lattices. In fact the DSVP step in the algorithm is the SVP step when we consider the reversed dual
basis and the SVP step is the DSVP step. This shows that those two lattices are going through the
exact same transformations, the only difference being the dimension : one is of dimension k and the
other k ` 1.

Hence, |S0,k| and |Srk,2k`1s| roughly follow the same probability law.

This give that Ep|S0,k|q ď Ep|Srk,2k`1s|q ď Ep|S0,k|q ` 1.

Thus

Ep min
eiRS0,k

∥πK
B0,k

peiq∥2q ď

n`1
2 ´ Ep|S0,k|q

n ` 1 ´ 2Ep|S0,k|q
“

1

2
.

Finally, we use that Epλ1pπK
B0,k

pZnqq2q ď EpmineiRS0,k
∥πK

B0,k
peiq∥2q.

And by using the same analysis to bound Epλ1pπK
B_

rk,2k`1s
pZnqqq, we obtain Eprq ď 1

2 .

Finally, I did experiments to study the evolution of |S0,k| and |Srk,2k`1s| during the iterations of
the algorithm. As it can be quite long I did not launched it on big dimension. Figure 12 represents
the evolution of those parameters, the blue curve corresponds to |S0,k| and the green one to |Srk,2k`1s|,
they have been generated in dimension 61, this being relatively small. It seems that |S0,k| ď |Srk,2k`1s|,
and the curvature is not the same, thus it might get further from one another in higher dimension.
However, further experiments in higher dimension are needed to see if the conjecture holds.
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6.4 Code algorithm on p blocks

Algorithm 3 is the variant of the original algorithm for p blocks. Just as before, by adding one
vector at the beginning, it is a slide reduction with blocks of size k ` 1.

Algorithm 3 Algorithm on p blocks

Require: B basis of L, L rotation of Zn, n ` 1 “ ppk ` 1q.
Ensure: B orthonormal basis of L

B Ð LLLpBq

while V olpB0,k`1q ą 1 do
for 0 ď i ď p ´ 2 do

Brk`ipk`1q,k`pi`1qpk`1qs Ð Primal-SVP Reduce pBrk`ipk`1q,k`pi`1qpk`1qsq

end for
for 0 ď i ď p ´ 2 do

Bripk`1q,pi`1qpk`1qs Ð Dual-SVP Reduce pBripk`1q,pi`1qpk`1qsq

end for
end while
B0,k Ð Primal-HKZ Reduce pB0,kq

for 1 ď i ď p ´ 1 do
Brk`pi´1qpk`1q,k`ipk`1qs Ð Primal-HKZ Reduce pBrk`pi´1qpk`1q,k`ipk`1qsq

end for
return B

We can represent this algorithms in the same way as for the slide reduction. The b̄ illustrates the
vector we would have to add in order to get a real slide reduction, by following the method from 6.8.

Figure 13: Schematic representation of algorithm 3

7 Background annex

7.1 Lattice algorithms

As most lattice algorithms focus on SVP, the description of lattice algorithms will be focused on
SVP.

Exact algorithms

These algorithms return a shortest vector of the lattice but at an exponential time cost. There are
two commonly used techniques to achieve this task : enumeration and sieving. Intuitively, enumeration
algorithms list all the extremely short vectors of the lattice, hence the exponential time, and return
one shortest [Kan83]. Whereas sieving algorithms generate an exponential number of vectors and find
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clever way to pair them, take their means to reduce the size of the vectors, and return a shortest vector
at the end with high probability. Currently, in order to solve SVP in dimension n, the best proved
running time is in Op2nq and uses sieving [ADRS15]. Whereas, the best running time for enumeration
is in Opn

n
2e q [HS07].

Approximation algorithms / Lattice reduction algorithms

The most commonly used approximation algorithms return a basis whose first vector is relatively
short. These algorithms are extremely faster than the ones above but at the cost of a huge loss in the
length on the shortest vector. As said before the LLL algorithm is polynomial but the bound on the
first vector is ∥b1∥ ď 2nλ1pLq, which is far from Minkowski’s bound. We can note that the fact that
polynomial approximation algorithms can only have an exponential approximation factor is really rare.

More complex algorithms such as BKZ or SDBKZ use exact SVP algorithms as a subroutine. In
fact they call the exact algorithms in a lower dimension in order to reduce the cost but lose in the
quality of the returned vectors. For example, the bound on SDBKZ [MW15] when applying the exact

SVP in dimension k is ∥b1∥ ď
?
γk

n´1
k´1 λ1pLq, achieved in OpPolypnq2kq. There are also algorithms

aiming at better approximation factor without returning a good basis. For example, there is an algo-
rithm which solves

?
n-SVP in Op2

n
2 q [ALS20].
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