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Abstract

Recent discoveries in asymptotically good quantum codes have intensified research on their
application in quantum computation and fault-tolerant operations. This study focuses on the
addressability problem within CSS codes, exploring the implementation of gates on individual
or subsets of logical qubits. We describe some undesirable codes that we call splitting codes and
demonstrate that applying physical Hadamard gates to a subset of physical qubits is feasible only
on those splitting codes. There is no such strong condition for phase gates but the codes allowing
them are potentially sub-optimal codes. We provide necessary conditions for parallel CNOT
gates to be valid logical operators, and we show that some CNOT gate implementations between
identical blocks require splitting codes. We also establish conditions for transversal Clifford
gates to be valid logical gates and prove that there is no transversal Clifford implementation of
𝐻,𝐻𝑃 , 𝑃𝐻,𝐶𝑁𝑂𝑇 on a non-splitting CSS code. Finally, we prove that CSS codes with an
asymptotic rate above 1

3
cannot have addressable logical swaps implemented solely by physical

swaps, and that in this same case, we cannot implement all parallel logical CNOTs between
two blocks by transversal physical CNOTs involving all physical qubits. This work pioneers
the study of addressability in quantum codes, offering new insights and potential directions for
future research.
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Introduction
Even though quantum computers hold great potential, constructing them in real life is challenging.
Classical computers, which use many electrons per bit, are mainly susceptible to bit flip errors. In
contrast, quantum computers use a few quantum particles per qubit, which can experience a con-
tinuum of possible errors that accumulate, leading to significant errors. Thus, quantum computers
are extremely vulnerable to noise and require efficient error correction algorithms to be practical.

Contrary to classical bits, qubits can be subject to two types of errors : bit flips and phase flips.
This is the reason why classical error correction does not directly apply to quantum computation.
The first quantum error correcting code was Shor’s repetition code [Sho95]. This code uses 9 phys-
ical qubits to encode a logical qubit, and could protect against any error on one of the 9 physical
qubits. Since then better quantum codes have been created such as the toric code by Kitaev [Kit03],
or Steane code [Ste96a]. These codes are part of a family of codes called CSS (Calderbank, Shor,
Steane) codes. The CSS construction is a way to create a quantum code given two compatible clas-
sical codes [CS96][Ste96b], and most well-studied quantum codes fall into this category.

In 2022, Pavel Palateev and Gleb Kalachev created an asymptotically good code [PK22]. This
means that as the number of physical qubits 𝑛 grows, the number of encoded qubits 𝑘 and the dis-
tance 𝑑 of the code will be linear in 𝑛. Such codes were already known for classical computing but
the existence of such codes in the quantum context was an open problem. In the same year Anthony
Leverrier and Gilles Zemor created quantum tanner codes [LZ22], and proved that they are also
asymptotically good. Thus, a lot of research is being done on those codes, and one of the most
important question is how can we use those codes for quantum computation : how can we apply
gates efficiently on them ?

To perform any computation, operations must be applied to quantum states. One approach is
to decode the logical state, apply the necessary operations, and then re-encode it. However, this
method is inefficient and leaves the state unprotected while decoded. Ideally, operations should be
applied directly to the encoded state. These operations, which might also introduce errors, must be
designed to minimize error propagation. For example, in the Shor repetition code, a bit flip error
on a physical qubit that is used as a control in a CNOT gate will cause the target qubit to also have a
bit flip error. If these qubits are part of the same block (contributing to the same logical qubit), the
error becomes uncorrectable. Therefore, in this case, fault-tolerant operations are defined as those
that ensure an error in the input leads to at most one error per block in the output, making the error
still correctable.

The most common method for fault-tolerant computation is using transversal gates. However,
finding transversal implementations of gates is challenging. For CSS codes, it is straightforward
to compute valid implementations of logical gates composed of X and Z operations, but these are
limited. Thus, the goal is to explore the validity of logical operations involving other gates, which
is a complex problem.

Furthermore, now that we are manipulating codes that encode 𝑘 > 1 logical qubits, we want
to know if we can implement the logical action of applying a gate 𝑈 only on the first logical qubit
for example, or on a subset of logical qubits. This problem is known as the addressability problem
and is equivalent to finding transversal implementation of 𝑈𝐼 : the gate 𝑈 only applied on qubits in
𝐼 for any unitary 𝑈 . While a considerable work has been done to find transversal gates and study
their actions on the code, very little has been done on the addressability. Addressability is in general
mentioned when the gate created is addressable but is rarely a goal : in [Zhu+23] the authors prove
that they can implement some addressable logical CZ gates using physical CZ gates on some of the
qubits for a family of quasi-hyperbolic color code. As illustrated by this example, such results have
only been proved for relatively specific and complex codes.

An easy way to do addressability is to take a code  made of two independent codes 1,2 on
which a gate is transversal. However, by doing this, the distance of  is the minimum of the dis-
tance of the subcodes. Thus, the goal would be to find codes that have some adressability property,
without splitting into independent codes.
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Figure 1: Visualization of a code

In this work, we explore possible implementations of addressable gates on CSS codes. To our
knowledge, this is the first study focusing on the addressability problem. We show that implement-
ing addressable logical Hadamard gates using Hadamard gates on a subset of physical qubits is only
possible when the code splits. For phase gates, such implementations are possible, but the codes
may not be optimal. We describe the necessary conditions for parallel CNOT gates from one block to
itself to be a valid logical operator and show that in the case of CNOTs between two identical blocks
some implementation require a splitting code. In a more general way, we prove necessary conditions
for a transversal Clifford gate to be a valid logical gate and prove in Corollary 2.20 and Theorem 2.21
that there is no transversal Clifford implementation of𝐻,𝐻𝑃 , 𝑃𝐻,𝐶𝑁𝑂𝑇 on a non-splitting CSS
code. Finally, by studying the automorphisms of codes, we prove in Corollary 3.11 that any family
of CSS code having an asymptotical rate bigger than 1

3 cannot have addressable logical swaps im-
plemented solely by physical swaps. And in the same case, we cannot implement all addressable
logical CNOTs between two blocks by transversal physical CNOTs involving all physical qubits.

1 Background
Let us think of a quantum code as represented in Fig. 1, if we want to apply a logical gate on
the orange logical qubit, we will most likely need to apply physical gates on its physical qubits.
However, by doing so, we will also modify the structure of the other logical qubits and might break
the structure of the code. Hence, the whole problem of this work is to study how one can apply
logical gates to some of the logicals qubits without breaking the structure.

1.1 Stabilizer Formalism
We denote by 𝑛 the group of n-qubits Paulis gates. For example𝑋⊗𝐼 ⊗𝑋⊗𝑍⊗𝑌 would be in
5. Since all single qubit Pauli gates are their own inverse, we get that it is still true in the n-qubit
gates. Hence, the eigenvalues of these operator can be only +1 or −1. Furthermore, given any pair
of n-qubit Paulis, they either commute or anti-commute.

We call a stabilizer set, any abelian subgroup 𝑆 of 𝑛 that does not contain −𝐼 . Since these
operators commute together, they preserve their eigenvalues and are simultaneously diagonalizable.
We define  = {|Ψ⟩ |∀ 𝑠 ∈ 𝑆, 𝑠 |Ψ⟩ = |Ψ⟩} the common +1 eigenspace of the stabilizers. Since
−𝐼 is not in 𝑆,  it is not trivial, and it is a vector space : this is a valid linear code. Now if an
error 𝑒 occurred on some codeword |Ψ⟩, we can measure 𝑠𝑒 |Ψ⟩ for all 𝑠 ∈ 𝑆 and if for one of them
we get − |Ψ⟩ then we detect the error. If we do not detect any error, then it mean that the error is a
logical operator since it sends codewords to other codewords.

To represent n-qubit Paulis, we often use a representation called the symplectic notation. Any
single qubit Pauli can be represented up to sign by a couple (𝑎, 𝑏) ∈ 𝔽 2

2 such that (𝑎, 𝑏) correspond
to 𝑋𝑎𝑍𝑏. Since any operator is made of 𝑛 single qubit Paulis, we can represent them up to sign
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by a vector in 𝔽 2𝑛
2 . when 𝑎 is a vector we write 𝑋𝑎 =

⨂

𝑎𝑖=1𝑋𝑖 with 𝑋𝑖 being the 𝑋 gate applied
only to qubit 𝑖 and similarly for 𝑍𝑎, let 𝑠 be a stabilizer, we write 𝑠 = (𝑠𝑋 | 𝑠𝑍 ) meaning that
𝑠 = 𝑋⊗𝑠𝑋𝑍⊗𝑠𝑍 . We use the symplectic inner product defined as ⟨𝑠1, 𝑠2⟩𝑆 = ⟨𝑠1𝑋 , 𝑠

2
𝑍⟩ + ⟨𝑠1𝑍 , 𝑠

2
𝑋⟩,this means that two n-qubit Paulis commute if and only if their symplectic inner product is even.

Once we have a stabilizer group, we can generate this group using 𝑛− 𝑘 generators, and the matrix
of the symplectic notation of the generators is a basis of the stabilizers.

We mentioned that an "error" could be detected if and only if it does not send codewords to code-
words. We will call "logical operators" those unitaries that preserve the codespace. We call logical
identities the unitaries that act as identity on the codespace. Let us show that logical operators are
the logical preserving the logical identities.
Proposition 1.1. 𝐿 is a logical operator if and only if 𝐿𝐼()𝐿† ⊆ 𝐼() where 𝐼() is the set of
logical identities for the code .

Proof. Let |Ψ⟩ be a codeword, then there exists |𝜙⟩ in the codespace such that 𝐿 |Ψ⟩ = |𝜙⟩. Let
𝑠 ∈ 𝐼() we get 𝑠𝐿 |Ψ⟩ = 𝐿 |Ψ⟩. Hence 𝐿𝑠𝐿†

|Ψ⟩ = |Ψ⟩. This means that 𝐿𝑠𝐿† is a logical
identity on the codespace, meaning that it is in 𝐼().

For the other direction, given 𝐿𝐼()𝐿† ⊆ 𝐼(), we know that there exists 𝑠′ ∈ 𝐼() such that
𝑠𝐿 = 𝐿𝑠′, which gives 𝑠𝐿 |Ψ⟩ = 𝐿𝑠′ |Ψ⟩ = 𝐿 |Ψ⟩, hence 𝑠𝐿 |Ψ⟩ = 𝐿 |Ψ⟩ for all 𝑠 ∈ 𝐼(),
meaning that 𝐿 |Ψ⟩ is in the codespace.

We call normalizers the element that preserves by conjugation a group 𝐺 and denote by𝑁𝐸(𝐺)the normalizer group of a given group 𝐺 that are in 𝐸. Thus the logical operators can be noted
𝑁𝐸(𝐼()) where 𝐸 is the space of unitaries, however for simplicity we will just write𝑁(𝐼()). We
can also observe that the stabilizers of a codespace correspond to the restriction of logical identities
to Pauli operators. Furthermore, in the context of logicals made of Paulis, there is an easier way to
describe valid logicals.
Proposition 1.2. If 𝐿 ∈ 𝑛 then 𝐿 is a logical operator if and only if it commutes with the stabi-
lizers.

Proof. Since 𝐿 is a logical operator, it sends logical identities to logical identities. And since the
Pauli form a group, it sends stabilizers to stabilisers, meaning that 𝐿𝑆𝐿† ⊆ 𝑆.

Since any two n-qubit Paulis either commute or anti-commute, if there exists 𝑠 ∈ 𝑆 such that
𝐿𝑠 = −𝑠𝐿 then if 𝐿 is a logical this gives 𝐿𝑠𝐿† = −𝑠 ∈ 𝑆 which means that −𝐼 is in 𝑆, which is
absurd since the definition of stabilizers state that −𝐼 ∉ 𝑆.

This allows for an efficient way to compute the Pauli logicals of a given stabilizer code : com-
pute the centralizer of the stabilizer group. And using the symplectic notation it makes things even
easier. Given a stabilizer group 𝑆, compute a basis of the symplectic representation of 𝑆. Compute
𝑆⟂ a basis of the space orthogonal to 𝑆 with respect to the symplectic inner product, this new basis
is a basis of the Pauli logicals of 𝑆. And since the stabilizer group is abelian, we get that in the
symplectic representation, 𝑆 ⊆ 𝑆⟂. As we are in finite dimension, we get that𝑁(𝑁(𝑆)) = 𝑆 since
(𝑆⟂)⟂ = 𝑆.

Logical operators can have the same "action" on the code. For example𝐿 and𝐿𝑠with 𝑠 ∈ 𝐼()
will have the same action. Hence, a way to consider all the different action is to quotient logical op-
erators by the logical identities (ie. the stabilizers). Hence, 𝑁(𝐼())∕𝐼() is the group describing
all the different logical actions on the stabilizer code . We can do something similar by restricting
to Paulis and get all the actions of Pauli logical by 𝑁(𝑆)∕𝑆. This makes it possible to easily count
the number of logical qubits we have for a given stabilizer code.

The study of non-Pauli logicals is more complex, there is no equivalent of the symplectic nota-
tion in the general case which make it harder to analyse. In some cases we can adapt the symplectic
notation, for example the XP formalism [WBB22] provides a framework and algorithms to compute

all XP logicals : logical gates made of X and 𝑃 =

⎛

⎜

⎜

⎜

⎝

1 0

0 𝑒
𝑖𝜋
𝑁

⎞

⎟

⎟

⎟

⎠

and 𝑤𝐼 where 𝑤 = 𝑒
2𝑖𝜋
𝑁 and 𝑁 is an
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arbitrary precision.

1.2 CSS codes
CSS codes, named after Robert Calderbank, Peter Shor, and Andrew Steane, are a way to cre-
ate quantum error correcting codes from two classical linear correcting codes 𝑋 ,𝑍 such that
⟂
𝑍 ⊆ 𝑋 . Let us call their parity check matrices 𝐻𝑋 ,𝐻𝑍 , the inclusion condition is equivalent to
𝐻𝑋𝐻𝑇

𝑍 = 0. We can describe CSS codes using the stabilizer formalism : let us call 𝑋 stabilizers
the row vectors in the span of 𝐻𝑋 and 𝑍 stabilizers the row vectors in the span of 𝐻𝑍 . We can see

this as saying that the symplectic representation of the stabilizers of the code is𝑆 =

⎛

⎜

⎜

⎜

⎝

𝐻𝑋 0

0 𝐻𝑍

⎞

⎟

⎟

⎟

⎠

.

We say that𝐻𝑋 corresponds to the𝑋-checks while𝐻𝑍 correspond to the𝑍 checks. The inclusion
condition implies that 𝑋 and 𝑍 stabilizers commute together meaning that we indeed have a well
defined stabilizer code. We can see CSS codes as stabilizer codes that can be generated by 𝑋 only
stabilizers and 𝑍 only stabilizers.

In this work we will often use another view of stabilizers codes, let us call 𝐴 = span(𝐻𝑋) and
𝐵 = span(𝐻𝑍 ), those are the space of the symplectic notations of 𝑋 and 𝑍 checks. In the follow-
ing, when writing 𝐶𝑆𝑆(𝐴,𝐵) we mean 𝐶𝑆𝑆(𝐶𝐴, 𝐶𝐵) with 𝐴 = span(𝐻𝑋) and 𝐵 = span(𝐻𝑍 )with 𝐻𝑋 ,𝐻𝑍 the parity checks of 𝐶𝑋 , 𝐶𝑍 . This allows us to write that the stabilizers of the 𝐶𝑆𝑆
code are 𝑆𝑋 = {𝑋𝑎

| 𝑎 ∈ 𝐴} and 𝑆𝑍 = {𝑍𝑏
| 𝑏 ∈ 𝐵}.

The following proposition describes the link between the rate of the CSS code and the classical
codes it is made of, where the rate 𝜌 is equal to the ratio 𝑘

𝑛 = 𝑛−𝑟
𝑛 where 𝑘 is the number of logical

qubits, 𝑟 is the dimension of the stabilizer space and 𝑛 the number of physical qubits.
Proposition 1.3. Let  = 𝐶𝑆𝑆(𝐶1, 𝐶2), calling 𝜌′, 𝜌′′ the maximum and minimum of the rates of
the classical codes𝐶1, 𝐶2 and 𝜌 the rate of , we get that 𝜌 = 𝜌′+𝜌′′−1, and 2𝜌′′−1 ≤ 𝜌 ≤ 2𝜌′−1.

Proof. We know that the rate of  is 𝑛−𝑟
𝑛 where 𝑟 = 𝑑𝑖𝑚(𝑆) = 𝑑𝑖𝑚(𝑆𝑥) + 𝑑𝑖𝑚(𝑆𝑧). Thus we can

write 𝜌𝑥 = 𝑛−𝑑𝑖𝑚(𝑆𝑥)
𝑛 and 𝜌𝑧 = 𝑛−𝑑𝑖𝑚(𝑆𝑧)

𝑛 . Hence 𝜌 = 𝜌𝑥 + 𝜌𝑧 − 1. This directly gives 2𝜌′′ − 1 ≤
𝜌 ≤ 2𝜌′ − 1.

1.3 Fault tolerant computation
Let us assume that we are using a quantum error correcting code that can correct up to 𝑡 errors. We
can then define fault tolerant computation by saying that it should guarantee that if we have less
than 𝑡 errors before the computation, then we should not have more than 𝑡 after. In a way we are
asking for the code not to propagate the error too much. For example, in the case of a code that can
correct only a single error (such as Shor’s repetition code), assuming there was an 𝑋 error on qubit
1, then applying a CNOT between qubit 1 and 3 of the code would propagate the error from 1 to 1
and 3, hence making the code not able to correct the error.

We can formalize this idea by introducing 𝑓𝑟 the operator that takes a set of words and project
it to the set of all those words up to 𝑟 errors.
Definition 1.4. Fault Tolerant Gate Error Propagation Property

Let 𝑈 be a single qubit gate, it is said to not propagate error if whenever 𝑟+ 𝑠 ≤ 𝑡, with 𝑠 being
the number of errors induced by the application of 𝑈 on the state, we have

𝑓𝑟 𝑈 ≡ 𝑓𝑟 𝑈 𝑓𝑟+𝑠

Definition 1.5. Fault Tolerant Gate Correctness Property
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Let 𝑈 be a single qubit gate, it is said to satisfy the correcness property if whenever 𝑟 + 𝑠 ≤ 𝑡,
with 𝑠 being the number of errors induced by the application of 𝑈 on the state, we have

𝑓𝑟 𝑈  ≡ 𝑓𝑟  𝑈̄

Where  represent the ideal decoder and 𝑈̄ the ideal gate 𝑈 (ie. without error ).

In order to avoid propagation of error, the idea is to isolate some part of the circuit, as no inter-
action would guarantee that there is less propagation of error, this is the concept on transversality.
Definition 1.6. Transversality

Let  = (𝑄𝑖)𝑖∈𝐼 be a partition of the qubits. We say that a gate 𝑈 is transversal with respect to
 if it can be decomposed as 𝑈 =

⨂

𝑖∈𝐼 𝑈𝑖 where 𝑈𝑖 acts only on 𝑄𝑖.

If not mentioned explicitly, the partition is 𝑄𝑖 = {𝑖}, and for multiple qubit gates involving 𝑝
blocks of code 𝑄𝑖 = {𝑖𝑗 |1 ≤ 𝑗 ≤ 𝑝} the set of 𝑖th qubit of each block.

For example, as we said earlier on the 3 repetition code, one can apply a logical 𝑋 gate by
applying a 𝑋 gate on all physical qubits. This means that 𝑋̄, the logical 𝑋 operator, has a transver-
sal implementation for this code. However the problem of deciding if a logical operation has a
transversal implementation is extremely hard and for now (except in some cases, as for example for
XP codes when studying the implementability of 𝑇 gate [WBB22]) the only option is to take an
implementation, check that it is a valid logical operator and then study its action.

It is quite easy to see that transversal gates guarantee the absence of propagation of error. How-
ever, there are still strong results proving that transversality cannot do everything.
Theorem 1.7. Eastin-Knill [EK09]

No quantum error correcting code that can correct single erasure can have universal and
transversal gates.

This theorem concerns all quantum error correcting codes and says that we cannot have a set
of gates that can be transversal and form a universal set. Thus in order to do fault tolerant quantum
computation, transversality cannot be the only solution, it is a very useful tool but need to be paired
with a way to go around this theorem in order to obtain a fault tolerant universal set of gates. Since
this theorem only apply to unitary implementation, we can use implementation involving measure-
ments to get out of it. Thus the common way to do fault tolerant computation is to take a code
having some nice transversal gates, and then generate the gate we need on the other code using state
injection. State injection uses an ancilla and link it to a physical qubit, then perform a conditional
measurement to implement a gate on this qubit. For example, we can inject the 𝐻 gate in a code
using the following circuit :

|𝜓⟩

|+⟩ 𝑍 𝑋 H|𝜓⟩

However not all gates are as hard to implement fault tolerantly. For example, a lot of codes such

as the 15 qubit Reed-Muller codes are built to have transversal 𝑇 gate with 𝑇 =

⎛

⎜

⎜

⎜

⎝

1 0

0 𝑒𝑖
𝜋
4

⎞

⎟

⎟

⎟

⎠

as it is

less costly to inject an𝐻 gate than a 𝑇 gate. More generally, some codes aim at having a transversal
implementation of a gate in the third level of the Clifford hierarchy.
Definition 1.8. Clifford Hierarchy

Let 1
𝑛 = 𝑛 the set of n-qubit Pauli operators.

For 𝑘 > 1, the 𝑘𝑡ℎ level of the n-qubit Clifford hierarchy is defined as
𝑘𝑛 = {𝑈 ∈ 2𝑛 (ℂ) | 𝑈𝑛𝑈† ⊆ 𝐶𝑛𝑘−1}.
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2 VALID LOGICAL AND SPLITTING CODES

We call the level 2 of this hierarchy the Clifford group. The operators in this level can be
simulated in polynomial time on classical computers [Got98], this result is known as the Gottesman-
Knill Theorem. The operators 𝐻,𝑆, 𝐶𝑁𝑂𝑇 all lie in this level and their products can actually
generate it. In order to form a universal set of gates and generate any possible unitary, we need to
add another gate such as the 𝑇 gate, that is in the third level of the hierarchy. Using the Eastin-
Knill theorem, we get that quantum error correcting codes cannot have transversal 𝐻,𝐶𝑁𝑂𝑇 , 𝑇
simultaneously.

2 Valid logical and splitting codes
When we want to implement quantum algorithms such as Shor’s algorithm on logical qubits, we
need to be able to apply gates to only some of the logical qubits. Hence the need to check what kind
of codes allow for those "addressable" gates. In this context, we want to know how we could have
adressability. The first method is to apply the gates to only some of the qubits. We show that under
such a strategy, it would require the code to split, which we illustrate as a "split" of the basis 𝑆 of
the stabilizers.

Figure 2: Visualization of a splitting code Figure 3: Visualization of a non-splitting
code

Definition 2.1. Let  = 𝐶𝑆𝑆(𝐴,𝐵), we say that 𝐴 splits on some support ℎ if the basis of 𝐴 can

be written up to permutation of the columns as

⎛

⎜

⎜

⎜

⎝

𝐴1 0

0 𝐴2

⎞

⎟

⎟

⎟

⎠

with ℎ being the support of 𝐴1.

If 𝐴 and 𝐵 both split on some support ℎ, we say that the stabilizer group 𝑆 splits on ℎ. This is
equivalent to saying that  splits into two independent codes 𝐶1, 𝐶2 where 𝐶1 is made of the qubits
in ℎ and 𝐶2 of the rest of the qubits. In this case 𝐶1, 𝐶2 are both CSS codes.

Remark 2.2. The notion of independence comes from the separable nature of the system.

If, using the previous definition, a CSS code  splits, we can observe that  is equivalent to two
independent codes 𝐶1, 𝐶2. Hence, if some gate 𝑈 has a transversal implementation on 𝐶1 and 𝐶2,
it trivially has an addressable equivalent in  : we can chose to which code we apply 𝑈 on. This
case is not interesting and it also means that the distance of the code is smaller than the distance of
both subcodes 𝐶1, 𝐶2. Importantly, this means that the distance of  can be at most the maximum
of the distance of the two subcodes. If we start with a high-rate code (like those mentioned in the
introduction), we can expect them not to split because otherwise there would be an even smaller,
better construction with equally good error correction capabilities. Moreoever, we could apply the
same argument to these subcodes, and eventually the codes must stop splitting because we know
that the rate of a single-qubit code cannot be arbitrarily high. In short, we can regard a code that
splits as a pathological case and ignore it. However, we will show in this section that in many
cases, it is impossible to apply gates addressably unless the code splits. Specifically, the following
addressable gates are impossible for non-splitting codes:

• Logical 𝐻,𝐻𝑃 , 𝑃𝐻 gates made of physical single-qubit Cliffords (Theorem 2.19)
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2 VALID LOGICAL AND SPLITTING CODES

• Logical CNOT gates made out of physical CNOTs, where the control and targets share a
specific overlap (Theorem 2.12)

• Logical CNOT gates made of physical single-qubit Cliffords (Theorem 2.21)
• Logical CNOT gates made out of physical CNOTs, where the logical target has weight greater

than the logical control (Proposition 2.9)
In order to prove these results, we will use another description of splitting codes proved in the

following lemma.
Lemma 2.3. 𝐴 splits on some support ℎ⇔ ∀ 𝑎 ∈ 𝐴, 𝑎 ∩ ℎ ∈ 𝐴.

Proof. If 𝐴 splits on some support ℎ then the matrix of 𝐴 can be written up to permutation of

qubits as
⎛

⎜

⎜

⎜

⎝

𝐴1 0

0 𝐴2

⎞

⎟

⎟

⎟

⎠

with 𝐴1 having ℎ as support. Thus 𝐴 = (𝐴1 0)⊕ (0 𝐴2). Hence for all 𝑎 ∈ 𝐴,

𝑎 = (𝑎1 𝑎2) and (𝑎1 0) = 𝑎 ∩ ℎ ∈ 𝐴 as 𝐴 = (𝐴1 0)⊕ (0 𝐴2).
Now for the other direction, if ∀ 𝑎 ∈ 𝐴, 𝑎 ∩ ℎ ∈ 𝐴, then considering (𝑎𝑖)𝑖 a basis of 𝐴, we get

that (𝑎𝑖 ∩ ℎ)𝑖 is a generating set of the restriction of 𝐴 to ℎ. We can take a basis from it, and since
𝑎𝑖 ∩ ℎ ∈ 𝐴 by hypothesis, we are able to get the top left block of the matrix : the basis of (𝐴1 0.

Now since we started with a basis of 𝐴, we can also generate the part outside of ℎ using them.
We consider the generating set (𝑎𝑖∖ℎ)𝑖 and make it into a basis. Since 𝑎𝑖 + 𝑎𝑖 ∩ ℎ = 𝑎𝑖∖ℎ we get

that 𝑎𝑖∖ℎ ∈ 𝐴, we indeed have a valid basis of 𝐴 of the form
⎛

⎜

⎜

⎜

⎝

𝐴1 0

0 𝐴2

⎞

⎟

⎟

⎟

⎠

which by definition means

that 𝐴 splits on ℎ.
Remark 2.4. We will use the abusive notation 𝐴 ∩ ℎ ⊆ 𝐴 to mean ∀ 𝑎 ∈ 𝐴, 𝑎 ∩ ℎ ∈ 𝐴.

Remark 2.5. We describe in Appendix D.1 an algorithm to decide if a code split and in the case of
a split, return the different blocks.

2.1 Single qubit gates
This first implementation we can think of is to apply physical gates to some carefully chosen physical
qubits, for example the qubits that are part of the logicals qubits we want to modify.

Figure 4: Visualization of physical gates Figure 5: Visualization of an example of a
naive implementation

Proposition 2.6. Let  = 𝐶𝑆𝑆(𝐴,𝐵) with stabilizers 𝑆, if 𝐻ℎ is a valid logical then 𝑆 splits on
ℎ. And if 𝐴 = 𝐵, then 𝑆 splits on some support ℎ if and only if 𝐻ℎ is a valid logical.

Proof. For 𝐻̄ = 𝐻ℎ to be a valid logical we need 𝐻̄𝑆𝐻̄ ⊆ 𝑆. Let 𝑠 ∈ 𝑆𝑥, 𝑠 = 𝑋𝑎, then
𝐻̄𝑠𝐻̄ = 𝑍ℎ∩𝑎𝑋𝑎∖ℎ. Thus 𝐻̄𝑠𝐻̄ ∈ 𝑆 ⇔ 𝑍ℎ∩𝑎, 𝑋𝑎∖ℎ ∈ 𝑆. And as 𝑋𝑎 is a stabilizer, we get that
𝑋𝑎𝑋𝑎∖ℎ = 𝑋𝑎∩ℎ ∈ 𝑆. By doing the same with a 𝑍 stabilizer we get the following properties :
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2 VALID LOGICAL AND SPLITTING CODES

∀ 𝑎 ∈ 𝐴, 𝑎 ∩ ℎ ∈ 𝐴 and ∀ 𝑏 ∈ 𝐵, 𝑏 ∩ ℎ ∈ 𝐵. Since all stabilizers in a CSS code can be generated
by all-𝑍 or all-𝑋 this characterization is enough. Hence if 𝐻̄ is a valid logical, then it means that
𝑆 splits on the support of ℎ.

Now in the case of 𝐴 = 𝐵 we do the other implication. If 𝑆 splits then 𝑁(𝑆) = 𝑆⟂ splits,
hence 𝑆⟂ = 𝑆⟂

1 ⊕ 𝑆⟂
2 . Furthermore, since 𝐴 = 𝐵, this property of same support for 𝑋 and 𝑍 is

also kept for the logicals. Hence, if 𝑋𝑐 is a valid logical, then 𝑍𝑐 is also a logical. Now applying
𝐻ℎ where ℎ corresponds to the support of 𝑆⟂

1 or 𝑆⟂
2 gives us a valid logical that sends 𝑋𝑐 to 𝑍𝑐 .

Furthermore, calling 𝑋̄𝑖, 𝑍̄𝑖 the logical 𝑋,𝑍 on logical qubit 𝑖, if 𝑋̄𝑖 = 𝑋𝑐 and 𝑍̄𝑖 = 𝑍𝑐 for all
logical qubits 𝑖 in the support of ℎ, then 𝐻ℎ implements a valid logical 𝐻 gate on all the qubits
encoded on his support.

This means that if 𝐻ℎ is a valid logical, the code has to split into two codes made respectively
of the qubits from the support of ℎ and those that are not in the support of ℎ. Furthermore, for
addressability, we need such a property to hold as many times as we have logical qubits in order to
be able to apply the gate to only one of the logical qubits.
Corollary 2.7. Let  = 𝐶𝑆𝑆(𝐴,𝐵) with stabilizers 𝑆, if  admits addressable gates implemented
by physical 𝐻 gates then 𝑆 splits into 𝑘 blocks.

Proof. Let us assume that 𝑆 admits an addressable logical gate 𝑈 made of physical 𝐻 . It means
that we have 𝑘 independent logicals 𝑈̄𝑖 = 𝐻ℎ𝑖 . Using Proposition 2.6 we get that 𝑆 will splits into
𝑘 blocks formed by the supports of the ℎ𝑖s.

These results show that in the context of CSS codes, applying physical 𝐻s to blocks of qubits
is a good strategy only if the code splits. We can use the same strategy and obtain inclusions de-
pending on 𝐴 and 𝐵 for the other gates, the results are proved in appendix and summarized in the
following table.

Gate CSS(A,B) if 𝐴 = 𝐵

𝐻ℎ
𝐴 ∩ ℎ ⊆ 𝐴

𝐵 ∩ ℎ ⊆ 𝐵
𝐴 ∩ ℎ ⊆ 𝐴

𝑃 ℎ 𝐴 ∩ ℎ ⊆ 𝐵 𝐴 ∩ ℎ ⊆ 𝐴

𝐶𝑁𝑂𝑇 𝐼←→𝐽 in the same block 𝜋𝑅(𝐴 ∩ 𝐼) ⊆ 𝐴

𝜋𝑅(𝐵 ∩ 𝐽 ) ⊆ 𝐵

𝐴 ∩ 𝐼 ⊆ 𝐴

𝐴 ∩ 𝐽 ⊆ 𝐴

Table 1: Inclusions if the gates are valid logicals

Where the CNOTs are applied on one block of the code, and the 𝜋𝑅 function is the bijective
function between target and control qubits given by the CNOTs.

We can also get some positive results for the 𝑃 gate. The following corollary is built on Propo-
sition B.1 studying the addressability of 𝑃 and state that when the code satisfies some hypothesis
we can build a non trivial logical with phase gates on a subset of qubits.
Corollary 2.8. Let  = 𝐶𝑆𝑆(𝐴,𝐵) such that there exists some ℎ = Supp(𝐵1) subset of J𝑛K satis-
fying ∀ 𝑎 ∈ 𝐴, 𝑎 ∩ ℎ ∈ 𝐵 and |𝑎 ∩ ℎ| = 0 mod 4 then 𝑃 ℎ is a valid logical, and if there is a non
trivial 𝑋 logical with support in ℎ, then 𝑃 ℎ is a non trivial logical.

Proof. Using the proof of Proposition B.1 we get that in this case 𝑃 ℎ is a valid logical.
Now about the action, assuming it exists, let us take 𝑋𝑐 a non trivial 𝑋 logical with support con-
tained in ℎ. We get that 𝑐 ∈ 𝐵⟂ and since 𝐴 ∩ ℎ ⊆ 𝐵, we have that 𝐵⟂ ⊆ (𝐴 ∩ ℎ)⟂. Thus
𝑐 ∈ (𝐴 ∩ ℎ)⟂, and this means that 𝑐 ∈ 𝐴⟂ as 𝑐 is zero outside of ℎ. Thus 𝑍𝑐 is a valid logical in
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this code. Now as 𝑐 ∉ 𝐵 since the logical is non trivial and 𝐴 ∩ ℎ ⊆ 𝐵, we get that 𝑐 ∉ 𝐴 ∩ ℎ, thus
𝑐 ∉ 𝐴. Hence 𝑐 ∈ 𝐴⟂∖𝐴, which means that 𝑍𝑐 is a non trivial logical.

Since 𝑃 ℎ sends non trivial logical 𝑋𝑐 to 𝑖𝑐𝑋𝑐𝑍𝑐 ≢ 𝑋𝑐 as 𝑍𝑐 is a non trivial logical. We get
that 𝑃 ℎ is a non trivial logical operator on the code.

Furthermore, in Appendix B.1 we describe a way to build such codes allowing addressable
phase gate. However, we then show that these codes are more likely to have small distances Ap-
pendix B.1. It is not obvious how one would build codes having addressable phase gate and a good
distance.

We can now use those equations, for example on the CNOT to study the possibility of imple-
menting addressable CNOT using physical CNOTs. For this, let us introduce 𝑋̃𝑖 = 𝑋 𝑎̃𝑖 be such that
|𝑎̃𝑖| = min{|𝑎| | 𝑋𝑎 ≡ 𝑋̄𝑖} where 𝑋̄𝑖 is the logical 𝑋 on logical qubit 𝑖. Thus 𝑋̃𝑖 is the minimal
representative of 𝑋̄𝑖. We can define similarly 𝑍̃𝑖 = 𝑍 𝑏̃𝑖 .

Let us now show that using physical CNOTs to implement addressable logical CNOTs has some
restriction.
Proposition 2.9. Let us assume that physical CNOT𝐼←→𝐽 implements logical CNOT𝐼 ′←→𝐽 ′ .

Then for all logical qubit 𝑖′ sent on 𝑗′ in the logical CNOT, we have |𝑎̃′𝑖| ≥ |𝑏̃′𝑗|.

Proof. Using the equations for CNOTs on one block, we get that 𝜋(𝑎̃′𝑖 ∩ 𝐼) ≡ 𝑍̄′
𝑗 .

Hence |𝑎̃′𝑖| ≥ |𝑎̃′𝑖 ∩ 𝐼| ≥ |𝑏̃′𝑗|.

2.2 CNOT between two blocks
Let us now consider the case where we take CNOTs between two blocks. Compared to the one
block case, we can allow 𝐼, 𝐽 (the set of control qubits and set of target qubits) to share elements,
meaning that calling 𝑅 the bijective relation such that 𝑖𝑅𝑗 iff 𝐶𝑁𝑂𝑇 (𝑖, 𝑗) is applied, 𝑅 ⊆ J𝑛K2.

We now have to define two permutations :
Let 𝜋𝐼 be defined such that

⎧

⎪

⎨

⎪

⎩

If 𝑖 ∈ 𝐼, 𝜋𝐼 (𝑖) = 𝑗 such that (𝑖, 𝑗) ∈ 𝑅
If 𝑗 ∈ 𝐽∖𝐼, 𝜋𝐼 (𝑗) = 𝑖 ∈ 𝐼∖𝐽
Else 𝑥 ∉ 𝐼 ∪ 𝐽 , 𝜋𝐼 (𝑥) = 𝑥

We define similarly 𝜋𝐽
⎧

⎪

⎨

⎪

⎩

If 𝑗 ∈ 𝐽 , 𝜋𝐽 (𝑗) = 𝑖 such that (𝑖, 𝑗) ∈ 𝑅
If 𝑖 ∈ 𝐼∖𝐽 , 𝜋𝐽 (𝑖) = 𝑗 ∈ 𝐽∖𝐼
Else 𝑥 ∉ 𝐼 ∪ 𝐽 , 𝜋𝐽 (𝑥) = 𝑥

Since there are as many controls not being targets and targets not being controls, 𝜋𝐼 and 𝜋𝐽 are
well defined. We can take 𝜋𝐽 = 𝜋−1𝐼 for simplicity.

We also define 𝑓𝐼 which is similar to 𝜋𝐼 but without being a permutation, and same for 𝑓𝐽 :
{

If 𝑖 ∈ 𝐼, 𝑓𝐼 (𝑖) = 𝑗 such that (𝑖, 𝑗) ∈ 𝑅
Else 𝑥 ∉ 𝐼, 𝑓𝐼 (𝑥) = 𝑥

Using the method from Proposition B.4, we obtain similar equations for the case of two blocks
:

{

∀ 𝑎 ∈ 𝐴, 𝜋𝐼 (𝑎 ∩ 𝐼) ∈ 𝐴′

∀ 𝑏′ ∈ 𝐵′, 𝜋𝐽 (𝑏 ∩ 𝐽 ) ∈ 𝐵
(1)

where we did the CNOTs with control on code  and target on code ′.
Proposition 2.10. In the case of 𝐴 = 𝐵 = 𝐴′ = 𝐵′ we get that 𝑆 must split on 𝐼 and 𝐽 .
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Proof. The technique is the same as for Corollary B.5, we only have to observe that 𝜋𝐽 (𝜋𝐼 (𝑎∩𝐼)) =
𝑎 ∩ 𝐼 and 𝜋𝐼 (𝜋𝐽 (𝑏′ ∩ 𝐽 )) = 𝑏′ ∩ 𝐽 .

Let us now apply the CNOTs between two blocks of the same code, meaning that 𝐴 = 𝐴′ and
𝐵 = 𝐵′. We show that under certain hypothesis on the orbits of 𝜋𝐼 , then the code has to split. To
illustrate this, let us start by the study of an example.
Example 2.11. Let us consider on a code with 7 qubits, and the following unitary

CNOT𝐼←→𝐽 = CNOT(1, 1)⊗CNOT(1, 1)⊗CNOT(2, 3)⊗CNOT(3, 4)⊗CNOT(4, 2)⊗CNOT(5, 6)

The CNOTs can be represented using the following diagram, where the top qubits are from the
control block and the bottom ones are the targets.

0 1 2 3 4 5 6

0 1 2 3 4 5 6

We can easily see that 𝐼 = {1, 2, 3, 4, 5} and 𝐽 = {1, 2, 3, 4, 6}
Furthermore, the only way to define 𝜋𝐼 and 𝜋𝐽 in this case is 𝜋𝐼 = (0)(1)(2, 3, 4)(5, 6) and

𝜋𝐽 = 𝜋−1𝐼
By observing 𝜋𝐼 we can see that there are two orbits contained in 𝐼 : (1) and (2,3,4)
Meaning that using Theorem 2.12, the code splits on {1, 2, 3, 4}. But let us develop the proof on

this example to understand better. Let us assume that this unitary is a valid logical, and assume that
𝑎 = 1101001 is an element of 𝐴. Then since we have a valid logical, we get that 𝜋𝐼 (𝑎∩ 𝐼) ∈ 𝐴, we
have 𝑎∩𝐼 = 0101000 and 𝜋𝐼 (𝑎∩𝐼) = 0100100 is in𝐴. Now this does not have the form of 𝑎∩𝐼 , so
as in the proof we can apply this reasoning one more time. Let us call 𝑎1 = 𝜋𝐼 (𝑎 ∩ 𝐼) = 0100100.
We now compute 𝑎2 = 𝜋𝐼 (𝑎1 ∩ 𝐼) = 0110000 and 𝑎3 = 𝜋𝐼 (𝑎2 ∩ 𝐼) = 0101000. We know that
𝑎3 ∈ 𝐴 and we can observe that 𝑎3 = 𝑎 ∩ {1, 2, 3, 4} where {1, 2, 3, 4} is the support of the orbits
of 𝜋𝐼 contained in 𝐼 . We can repeat this process for all𝑋 stabilizer and use 𝜋𝐽 for the𝑍 stabilizer
and obtain the split of the code.

By formalizing what we developed in this example, we can actually show that if such a unitary
is a valid logical, then the code has to split on the support of some of its orbits.
Theorem 2.12. Let  be a CSS code such that 𝑆 = {𝑋𝑎, 𝑍𝑏

| 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with 𝐴,𝐵 ⊆ ℤ𝑛2. If
𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅 is a valid logical then 𝑆 splits on the union of the support of the orbits of 𝜋𝐼 contained
in 𝐼 .

Proof. Since 𝜋𝐼 and 𝜋𝐽 are bijective, we have the equality 𝜋𝐼 (𝑎∩𝐼) = 𝜋𝐼 (𝑎) ∩𝜋𝐼 (𝐼), and similarly
for 𝜋𝐽 . Hence iterating this equation 𝑁 times gives

𝜋𝐼 (𝜋𝐼 (⋯𝜋𝐼 (𝑎 ∩ 𝐼) ∩ 𝐼)⋯) ∩ 𝐼) = 𝜋𝐼 (𝑎)𝑁 ∩

(

⋂

1≤𝑘≤𝑁
𝜋𝑘𝐼 (𝐼)

)

Which means that

∀ 𝑎 ∈ 𝐴,𝑁 ∈ ℕ
⟩0, 𝜋𝐼 (𝑎)𝑁 ∩

(

⋂

1≤𝑘≤𝑁
𝜋𝑘𝐼 (𝐼)

)

∈ 𝐴

∀ 𝑏 ∈ 𝐵,𝑁 ∈ ℕ
⟩0, 𝜋𝐽 (𝑏)𝑁 ∩

(

⋂

1≤𝑘≤𝑁
𝜋𝑘𝐽 (𝐽 )

)

∈ 𝐵

However, since 𝜋𝐼 is a permutation, there exists some order 𝑁0 such that 𝜋𝑁0
𝐼 = 𝐼𝑑. Thus

by calling 𝐼 =
⋂

1≤𝑘≤𝑁0
𝜋𝑘𝐼 (𝐼), we get that 𝐴 splits on 𝐼 and a similar results holds for 𝐵 with 𝐽

defined by a similar way with 𝜋𝐽 . For this splits to be interesting, it must be non-trivial, meaning
we want 𝐼, 𝐽 not to be empty.
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We can observe that since 𝜋𝐼 and 𝑓𝐼 are defined similarly on 𝐼 we get that
𝑓𝐼 (𝑓𝐼 (⋯ 𝑓𝐼 (𝐼) ∩ 𝐼) ∩ 𝐼)⋯) ∩ 𝐼) = 𝜋𝐼 (𝜋𝐼 (⋯𝜋𝐼 (𝐼) ∩ 𝐼) ∩ 𝐼)⋯) ∩ 𝐼)

Furthermore, since for all 𝑥 ∉ 𝐼 , 𝑓𝐼 (𝑥) = 𝑥, we get that 𝑓𝐼 (𝑓𝐼 (𝐼) ∩ 𝐼) ∩ 𝐼 = 𝑓𝐼 (𝑓𝐼 (𝐼)) ∩ 𝐼 .
First the left inclusion is obvious since 𝑓𝐼 (𝐼) ∩ 𝐼 ⊆ 𝑓𝐼 (𝐼). Now for the other direction, given
𝑦 ∈ 𝑓𝐼 (𝑓𝐼 (𝐼))∩𝐼 then as 𝑦 ∈ 𝐼 , then the element 𝑧 such that 𝑓𝐼 (𝑓𝐼 (𝑧)) = 𝑦must verify 𝑓𝐼 (𝑧) ∈ 𝐼 ,
otherwise, since 𝑓 is the identity outside of 𝐼 , we get that 𝑦 = 𝑓𝐼 (𝑧) ∉ 𝐼 which is absurd. Thus, by
iterating this identity 𝑁 times we get :

𝑓𝐼 (𝑓𝐼 (⋯ 𝑓𝐼 (𝐼) ∩ 𝐼) ∩ 𝐼)⋯) ∩ 𝐼) = 𝑓𝑁𝐼 (𝐼) ∩ 𝐼

Thus, we can define 𝐼 as 𝐼 = 𝑓𝑁0
𝐼 (𝐼) and 𝐽 = 𝑓𝑁0

𝐽 (𝐽 ), where𝑁0 is the same since we can take
𝜋𝐼 , 𝜋𝐼 to be inverse of each other.

Now, if 𝜋𝐼 contain at least an orbit having support in 𝐼 then 𝐼 is non-empty. Indeed, let us call
𝐶𝐼 the support of this orbit, for all 𝑘, 𝐶𝐼 ⊆ 𝜋𝑘𝐼 (𝐼), thus 𝐶𝐼 ⊆ 𝐼 . Hence, if 𝐶𝐼 is non-empty, then 𝐼
is non-empty.

In the case of 𝜋𝐼 not having any orbit in 𝐼 , we can use that 𝑓𝐼 would not have one either since
they are defined the same on 𝐼 . This means that for all 𝑖 ∈ 𝐼 there exists 𝑛𝑖 such that 𝑓 𝑛𝑖𝐼 (𝑖) ∉ 𝐼 .
Hence, by taking 𝑛 = max𝑖 𝑛𝑖, we have that 𝑓 𝑛𝐼 (𝐼) ∩ 𝐼 = ∅, and 𝐼 = ∅.

Let us now consider a CNOT such that is has an orbit in 𝐼 , then by definition, this orbit is in
𝐼 ∩ 𝐽 since each of its element is both a target and a control. And as we can take 𝜋𝐽 to be the
inverse of 𝜋𝐼 , if we have an orbit in 𝐼 for 𝜋𝐼 , then we have an orbit for 𝜋𝐼 , 𝜋𝐽 in 𝐼 ∩ 𝐽 . Thus,
𝐼 = 𝐽 =

⋃

𝑖 |𝐶𝑖| where (𝐶𝑖)𝑖 are the orbits of 𝜋𝐼 on 𝐼 . Furthermore, using the equations above we
get that 𝐴,𝐵 split on the same support 𝐼 , meaning that 𝑆 splits on 𝐼 = 𝐽 .

2.3 Transversal Clifford
Before studying the entire Clifford group, we study the case of unitaries made of a tensor prod-
uct of 𝑛 single qubit Clifford gates. This means that we consider 𝑈 =

⨂

𝑖≤𝑛 𝑈𝑖 where 𝑈𝑖 ∈
⟨𝑖𝐼, 𝑋,𝑍, 𝑃 ,𝐻⟩. To make it easier, we classify those Clifford gates depending on their action
on the Pauli gates. Let us write 𝐶∕ = ⟨𝐻,𝑃 ⟩ be the single qubit Clifford quotiented by the
Paulis. Let us consider this up to global phase, we then have 6 different type of gates:

• type I : sends 𝑋 to 𝑋 and 𝑍 to 𝑍
• type P : sends 𝑋 to 𝑌 and 𝑍 to 𝑍
• type HP : sends 𝑋 to 𝑌 and 𝑍 to 𝑋
• type PHP : sends 𝑋 to 𝑋 and 𝑍 to 𝑌
• type PH : sends 𝑋 to 𝑍 and 𝑍 to 𝑌
• type H : sends 𝑋 to 𝑍 and 𝑍 to 𝑋
Now since we might want to send on −𝑋 or −𝑍 etc, we can add the Paulis, For example to put

a minus on the image of 𝑋 we can put a 𝑍, for the image of 𝑍, take an 𝑋 and for both we can
take 𝑖𝑌 . Hence, any single qubit Clifford gate can be written 𝑈𝑖 = 𝐴𝐵 with 𝐴 ∈ ⟨𝐼,𝐻, 𝑃 ⟩ and
𝐵 ∈ ⟨𝐼,𝑋,𝑍⟩.

Let us first consider the unitaries up to phase, meaning that we only care of the unitaries quo-
tiented by the Paulis. Let𝑈 be a unitary made of a tensor product of single qubit Clifford quotiented
by Paulis such that 𝑈𝑖 ∈ ⟨𝐻,𝑃 ⟩. We write {𝑈𝐺} = {𝑖 | 𝑈𝑖 is of type 𝐺}. For example, if we take
𝑈 = 𝑃 ⊗𝐻 ⊗𝐻 , we have {𝑈𝐻} = {2, 3}. And by {𝑈𝐺1,𝐺2} we denote {𝑈𝐺1} ∪ {𝑈𝐺2}.
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2 VALID LOGICAL AND SPLITTING CODES

Proposition 2.13. Let  be a CSS code such that 𝑆 = {𝑋𝑎, 𝑍𝑏
| 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with 𝐴,𝐵 ⊆ ℤ𝑛2.

Let 𝑈 be a Clifford gate made of a tensor product of 𝑛 single qubit Clifford gate, and 𝑈̄ the unitary
𝑈 quotiented by Paulis. Then if 𝑈 is a valid logical, we have that

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∀ 𝑎 ∈ 𝐴, 𝑎 ∩ {𝑈̄𝑃 ,𝐻𝑃 ,𝑃𝐻,𝐻} ∈ 𝐵
∀ 𝑎 ∈ 𝐴, 𝑎 ∩ {𝑈̄𝑃𝐻,𝐻} ∈ 𝐴
∀ 𝑏 ∈ 𝐵, 𝑏 ∩ {𝑈̄𝐻𝑃 ,𝑃𝐻𝑃 ,𝑃𝐻,𝐻} ∈ 𝐴
∀ 𝑏 ∈ 𝐵, 𝑏 ∩ {𝑈̄𝐻𝑃 ,𝐻} ∈ 𝐵

(2)

Proof. Using the types of single qubit Clifford we get the action of 𝑈̄ on 𝑋𝑎 and 𝑍𝑏 :

𝑈̄𝑋𝑎𝑈̄ = 𝑋𝑎∖{𝑈̄}𝑋𝑎∩{𝑈̄𝐼,𝑃𝐻𝑃 }𝑍𝑎∩{𝑈̄𝑃𝐻,𝐻}𝑌 𝑎∩{𝑈̄
𝑃 ,𝐻𝑃 }

= 𝑋𝑎∖{𝑈̄}𝑋𝑎∩{𝑈̄𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 }𝑍𝑎∩{𝑈̄𝑃 ,𝐻𝑃 ,𝑃𝐻,𝐻}

≡ 𝑋𝑎∩{𝑈̄𝑃𝐻,𝐻}𝑍𝑎∩{𝑈̄𝑃 ,𝐻𝑃 ,𝑃𝐻,𝐻} as 𝑋𝑎 is a stabilizer
We can use the same method on the 𝑍 stabilizers to obtain the two other equations.

Furthermore, we can combine those equations and get some more splitting :
Corollary 2.14. Let  = 𝐶𝑆𝑆(𝐴,𝐵), and𝑈 be a Clifford gate made of a tensor product of 𝑛 single
qubit Clifford gate, and 𝑈̄ the unitary 𝑈 quotiented by Paulis. Then if 𝑈 is a valid logical, we have
that

⎧

⎪

⎨

⎪

⎩

∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝐻𝑃 } ∈ 𝑆
∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝑃𝐻} ∈ 𝑆
∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝐻} ∈ 𝑆

(3)

Proof. Let 𝑎 ∈ 𝐴 then using the second equation, 𝑎 ∩ {𝑈̄𝑃𝐻,𝐻} ∈ 𝐴, and using the first equation,
we get that 𝑎 ∩ {𝑈̄𝑃𝐻,𝐻} ∈ 𝐵. Now using the fourth equation, (𝑎 ∩ {𝑈̄𝑃𝐻,𝐻}) ∩ {𝑈̄𝐻𝑃 ,𝐻} =
𝑎∩{𝑈̄𝐻} ∈ 𝐵. Finally, using the third equation, we get that 𝑎∩{𝑈̄𝐻} ∈ 𝐴. We can do something
similar for 𝐵 and show that 𝑆 slits on {𝑈̄𝐻}.

Now that we have those splits, we can combine them with the second and fourth equations of
Proposition 2.13 to obtain that

∀ 𝑎 ∈ 𝐴, 𝑎 ∩ {𝑈̄𝑃𝐻} ∈ 𝐴 and ∀ 𝑏 ∈ 𝐵, 𝑏 ∩ {𝑈̄𝐻𝑃 } ∈ 𝐵

We can even go further, let us take 𝑎 ∈ 𝐴, then using the first equation of Proposition 2.13 we get
𝑎∩{𝑈̄𝑃 ,𝐻𝑃 ,𝑃𝐻,𝐻} ∈ 𝐵, now using the newly found 𝑏∩{𝑈̄𝐻𝑃 } ∈ 𝐵, we get that 𝑎∩{𝑈̄𝐻𝑃 } ∈ 𝐵.
Finally, by using that 𝑏 ∩ {𝑈̄𝐻𝑃 ,𝑃𝐻𝑃 ,𝑃𝐻,𝐻} ∈ 𝐴 we get that 𝑎 ∩ {𝑈̄𝐻𝑃 } ∈ 𝐴. This implies that
the stabilizers split on {𝑈̄𝐻𝑃 }. Now by using the same analysis on 𝐵 with {𝑈̄𝑃𝐻} we can show
that 𝐵 splits on {𝑈̄𝑃𝐻} and thus the stabilizers split on {𝑈̄𝑃𝐻}.
Remark 2.15. The implication of Corollary 2.14 is quite important, because if  is not a splitting
code then {𝑈̄𝐻𝑃 }, {𝑈̄𝑃𝐻}, {𝑈̄𝐻} are all either empty or the whole set of qubits.

We can apply those results to see how one could build a logical Hadamard made with a transver-
sal Clifford. For each logical operator 𝑋̄𝑖, 𝑍̄𝑖 we can take as representative any gate that is in 𝑋̄𝑖𝑆since they have the same action as 𝑋̄𝑖. Let us then define as 𝑋̃𝑖 = 𝑋 𝑎̃𝑖 the element of 𝑋̄𝑖𝑆𝑋 with
the smallest Hamming weight and similarly for 𝑍̃𝑖 = 𝑍 𝑏̃𝑖 .

Proposition 2.16. Let 𝑈 be a Clifford gate made of a tensor product of 𝑛 single qubit Clifford gate,
and 𝑈̄ the unitary 𝑈 quotiented by Paulis. Then if 𝑈 sends 𝑋̄𝑖𝑆 to 𝑍̄𝑖𝑆 and conversely, we have
that 𝑎̃𝑖 ⊆ {𝑈̄𝑃𝐻,𝐻} and 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 ,𝐻}.

Proof. Using the same analysis as in the previous proof, 𝑈̄𝑋 𝑎̃𝑖𝑈̄ = 𝑋 𝑎̃𝑖∖{𝑈̄}𝑋 𝑎̃𝑖∩{𝑈̄𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 }𝑍 𝑎̃𝑖∩{𝑈̄𝑃 ,𝐻𝑃 ,𝑃𝐻,𝐻}.
However, since we are sending 𝑋̄𝑖𝑆 to 𝑍̄𝑖𝑆, it means that 𝑋 𝑎̃𝑖∖{𝑈̄}𝑋 𝑎̃𝑖∩{𝑈̄𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 } is a stabilizer.
However if it was the case, then we could consider 𝑎 = 𝑎̃𝑖 + 𝑎̃𝑖∖{𝑈̄} + 𝑎̃𝑖 ∩ {𝑈̄ 𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 } and
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2 VALID LOGICAL AND SPLITTING CODES

it would have a smaller Hamming weight. Hence the minimality of the Hamming weight of 𝑎̃𝑖guarantees that 𝑎̃𝑖∖{𝑈̄} + 𝑎̃𝑖 ∩ {𝑈̄ 𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 } = 0. Hence 𝑎̃𝑖 ⊆ {𝑈̄𝑃𝐻,𝐻}. Using the exact same
method on 𝑍 𝑏̃𝑖 we get that 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 ,𝐻}.

Remark 2.17. Using the same method, if we want 𝑈 to act as identity on 𝑋̄𝑖 and 𝑍̄𝑖 then it implies
𝑎̃𝑖 ∩ {𝑈̄𝑃𝐻,𝐻} = 0 and 𝑏̃𝑖 ∩ {𝑈̄𝐻𝑃 ,𝐻} = 0.

Remark 2.18. In the case where we want 𝑈 to act as an 𝐻 on all logical qubits simultaneously,
calling 𝐴̃ =

⋃

𝑖≤𝑘 𝑎̃𝑖 and 𝐵̃ =
⋃

𝑖≤𝑘 𝑏̃𝑖 we get that for 𝑈 to be valid we need 𝐴̃ ∩ 𝐵̃ ⊆ {𝑈̄𝐻},
meaning that 𝑈̄ = 𝐻 𝐴̃∩𝐵̃ ⊗ 𝑈̄ ′.

Theorem 2.19. On a CSS code, any implementation of addressable logical Hadamard using transver-
sal Clifford requires a splitting code. Furthermore, the logical Hadamard is applied to all logical
qubits of a subcode and implemented using physical Hadamard on all qubits of this subcode.

This result stays valid when replacing 𝐻̄𝐼 the logical hadamard on qubits in 𝐼 by logical 𝐻𝑃 𝐼
or logical 𝑃𝐻𝐼 .

Proof. Let  = 𝐶𝑆𝑆(𝐴,𝐵) be a CSS code. Let 𝑈 be a tensor product of 𝑛 single qubit Clifford
gates. Using Corollary 2.14 we get that for 𝑈 to be a valid logical gate, we need

⎧

⎪

⎨

⎪

⎩

∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝐻𝑃 } ∈ 𝑆
∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝑃𝐻} ∈ 𝑆
∀ 𝑠 ∈ 𝑆, 𝑠 ∩ {𝑈̄𝐻} ∈ 𝑆

Now let us consider𝑋𝑖 a logical operator on this code. Since the𝑍 stabilizers split, we can take
𝑋𝑖 with support either in {𝑈̄𝐻𝑃 } or {𝑈̄𝐻} or {𝑈̄𝑃𝐻} or {𝑈̄ 𝐼,𝑃 ,𝑃𝐻𝑃 }, and its minimal represen-
tative 𝑋̃𝑖 will have support in the same block. We can apply the same analysis for 𝑍̃𝑖. Now using
Proposition 2.16, we know that in order to act as a logical Hadamard on logical qubit 𝑖 we need
𝑎̃𝑖 ⊆ {𝑈̄𝑃𝐻,𝐻} and 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 ,𝐻}. However, since they have to anti commute, their intersection
cannot be empty. Hence, they both have to be contained in the block {𝑈̄𝐻}.

Now for logical qubits we do not want to modify, using Remark 2.17 we need 𝑋̃𝑖 to have its
support outside of {𝑈̄𝑃𝐻,𝐻} and 𝑍̃𝑖 outside of {𝑈̄𝐻𝑃 ,𝐻}. Calling 𝐶 ′ the code corresponding
to the qubits in {𝑈̄ 𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 ,𝑃𝐻} and calling 𝐶𝐻 the code with qubits in {𝑈̄𝐻}, we can write
𝑈 = 𝑈 ′ ⊗𝐻ℎ with ℎ = {𝑈̄𝐻}. Finally, for 𝑈 to act as a logical addressable Hadamard, we need
𝑈 ′ to be a logical identity in 𝐶 ′ and 𝐶𝐻 to be a self-dual code (𝐴∩{𝑈̄𝐻} = 𝐵 ∩{𝑈̄𝐻}). This way
we are going to apply a logical Hadamard to all logical qubits of 𝐶𝐻 .

The proof in the case of logical 𝐻𝑃 𝐼 or logical 𝑃𝐻𝐼 is similar and has been done in Theo-
rem B.7.

Corollary 2.20. There is no transversal Clifford implementation of addressable logical𝐻,𝐻𝑃 , 𝑃𝐻
on a non-splitting CSS code.

Theorem 2.21. There is no transversal Clifford implementation of addressable logical CNOT on
a non-splitting CSS code.

Proof. Suppose the logical CNOT acts from a logical qubit set 𝐼 to a target set 𝐽 . Let 𝑋𝑎 be
equivalent to 𝑋̄𝐼 : the logical gate with 𝑋̄ on all the control logical qubits. Using Corollary 2.14,
we know that we can only use gates of type 𝐼, 𝑃 , 𝑃𝐻𝑃 in the transversal Clifford implementation.
Let us call 𝑈 this implementation. We have 𝑈𝑋𝑎𝑈† = 𝑋𝑎𝑍𝑎∩{𝑈̄𝑃 }. Since we want to act as a
logical CNOT, this is supposed to be equivalent to𝑋𝑎+𝑏, where𝑋𝑏 is equivalent to 𝑋̄𝐽 : the logical
gate with 𝑋̄ on all the target logical qubits. This means𝑋𝑎𝑍𝑎∩{𝑈̄𝑃 }𝑋𝑎+𝑏 = 𝑋𝑏𝑍𝑎∩{𝑈̄𝑃 } should be
a stabilizer, which implies 𝑋𝑏 is a stabilizer, contradicting that it is a logical 𝑋 operator.
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3 CODE AUTOMORPHISMS AND ADDRESSABILITY

3 Code Automorphisms and Addressability
In the previous section we applied quantum gates on physical qubits to implement logical quantum
gates and showed limits of "simple" implementations. Another interesting gate would be the swap
gate : exchanging two qubits together. In this section we observe the possible actions of swapping
physical qubits of a code and prove some limits of such implementations.
Definition 3.1. Let  a classical code with parity check 𝐺, 𝜏𝑛 ∈ 𝑆𝑛 is an automorphism of  iff
there exists 𝑈 ∈ 𝐺𝑙𝑟(𝔽2) such that 𝑈𝐺 = 𝐺𝑃 where 𝑃 is the permutation matrix of 𝜏𝑛.

Definition 3.2. 𝜏𝑛 ∈ 𝑆𝑛 is an automorphism of 𝐶𝑆𝑆(1,2) iff it is an automorphism of 1 and
2.

In this case, calling 𝐺 =

⎛

⎜

⎜

⎜

⎝

𝐻1

𝐻2

⎞

⎟

⎟

⎟

⎠

where 𝐻1,𝐻2 are the respective parity checks, we get that

𝑈𝐺 = 𝐺𝑃 with 𝑈 =

⎛

⎜

⎜

⎜

⎝

𝑈1 0

0 𝑈2

⎞

⎟

⎟

⎟

⎠

.

Example 3.3. Take 𝐻1 =
(

1 1 0

)

and 𝐻2 =
(

0 1 1

)

, we get 𝐺 =

⎛

⎜

⎜

⎜

⎝

1 1 0

0 1 1

⎞

⎟

⎟

⎟

⎠

.

We can see that

⎛

⎜

⎜

⎜

⎝

0 1

1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 1 0

0 1 1

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1 1 0

0 1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0

0 0 1

1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

This means that the permutation of qubits represented by the matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0

0 0 1

1 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

preserves the

stabilizer group, meaning that it is a valid automorphism for the classical code represented by 𝐺
but it is not a valid automorphism for 𝐶𝑆𝑆(1,2) as it is not an automorphism on 1,2.

Remark 3.4. The matrix 𝐺 =

⎛

⎜

⎜

⎜

⎝

𝐻1

𝐻2

⎞

⎟

⎟

⎟

⎠

, corresponds to the parity check matrix of the classical code

where we forget if a check is of type X or Z.

Intuitively, this means that an automorphism can permute the columns of𝐺 in such a way that it
preserves the vector space. However this puts strong conditions on the form of the invertible matrix
𝑈 .
Proposition 3.5. The number of pairs 𝑈, 𝑃 of invertible matrix and permutation such that 𝑈𝐺 =
𝐺𝑃 only depends on the vector space of 𝐺 and not the basis.

Proof. Let 𝐺̄ = 𝑊𝐺𝑃 ′ be another basis of the vector space. Let𝑈, 𝑃 respectively an invertible ma-
trix and a permutation, if 𝑈𝐺𝑃 𝑇 = 𝐺 then (𝑊𝑈𝑊 −1)𝐺̄(𝑃 ′𝑇𝑃𝑃 ′) = 𝐺̄. Furthermore, 𝑊𝑈𝑊 −1

is invertible and 𝑃 ′𝑇𝑃𝑃 ′ is a permutation. Thus, there are as many pairs for 𝐺 and 𝐺̄.
Proposition 3.6. Calling 𝑚 the number of pairs 𝑈, 𝑃 of invertible matrix and permutation such
that 𝑈𝐺 = 𝐺𝑃 , and 𝑝 the number of pairs of permutation such that 𝑃 ′𝐺′ = 𝐺′𝑃 ′′ we have
𝑝 ≤ 𝑚 ≤ 𝑛!

(𝑛−𝑟)! , where 𝐺′ is the right block in the row reduced form of 𝐺.
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3 CODE AUTOMORPHISMS AND ADDRESSABILITY

Proof. Since𝐺 has 𝑟 independent rows, we can reduce it such that it has the form 𝐺̄ =
(

𝐼𝑟 𝐺′

)

=

𝑊𝐺𝑃 ′ where 𝑊 ∈ 𝐺𝐿𝑟(𝔽2) and 𝑃 ′ a permutation matrix of dimension 𝑛.
Using Proposition 3.5 we get that there are as many pairs for 𝐺 and for 𝐺̄.
Let 𝑀 be an invertible matrix of rank 𝑟, we get that 𝑀𝐺̄ =

(

𝑀 𝑀𝐺′

)

. Thus, for 𝑀 to be
part of a valid pair, it has to be made of 𝑟 independent columns of 𝐺̄. And there are less than 𝑛!

(𝑛−𝑟)!ways to pick such set of columns.
For the lower bound, we can check that we can extend any valid permutation on 𝐺′ into a valid

permutation on 𝐺̄. Let 𝑃 ′, 𝑃 ′′ be permutation matrix of dimension respectively 𝑟, 𝑛 − 𝑟.

𝑃 ′𝐺̄ =
(

𝑃 ′ 𝑃 ′𝐺′

)

=
(

𝑃 ′ 𝐺′𝑃 ′′

)

=
(

𝐼𝑟 𝐺′

)

⎛

⎜

⎜

⎜

⎝

𝑃 ′ 0

0 𝑃 ′′

⎞

⎟

⎟

⎟

⎠

= 𝐺̄

⎛

⎜

⎜

⎜

⎝

𝑃 ′ 0

0 𝑃 ′′

⎞

⎟

⎟

⎟

⎠

Hence, any pair of permutation on 𝐺′ can be extended into a valid one on 𝐺̄.

Remark 3.7. Furthermore, since we want 𝑀𝐺̄ = 𝐺̄𝑃 with 𝑃 a permutation of the columns, then
we also need 𝑀𝐺̄ to generate 𝐼𝑟, meaning that the columns of 𝑀−1 should also be in 𝐺̄. This is a
stricter restriction and could reduce the upper bound significantly depending on the code. We use
this observation to create an algorithm to find all matrices 𝑈 having 𝑈𝐵 = 𝐵𝑃 without going over
all permutations. We present the algorithm and some of the results in Appendix D.2.

Remark 3.8. Here we are assuming that𝐺 is full rank, thus we can just consider𝐺 to be the parity
check of a classical code. Or to apply this result directly to quantum codes, we need 𝑋 and 𝑍
checks to be independent, and this hypothesis is not too restrictive.

We are now going to use the upper bound on the number of automorphism of classical code, to
describe families of CSS codes on which we cannot have addressable swaps implemented by only
permutation of qubits.
Theorem 3.9. Let 𝑛 = 𝐶𝑆𝑆(𝐶1

𝑛 , 𝐶
2
𝑛 ) such that calling 𝜌′𝑛, 𝜌

′′
𝑛 the maximum and minimum of the

rates of the classical codes𝐶1
𝑛 , 𝐶

2
𝑛 we have 2𝜌′𝑛+𝜌

′′
𝑛 > 2 starting from some 𝑛 > 𝑛1. Then this family

of codes does not have all addressable permutations of logical qubits implemented by permutations
of physical qubits only.

Proof. Let us consider only the codes for 𝑛 > 𝑛1. Let us assume that we have some permutation
of the qubits 𝑃 that preserves the codespace. This means that 𝑃 is an automorphism for the CSS
code, hence an automorphism for both classical codes that makes the CSS code. An upper bound
of the number of such permutation 𝑃 is thus the minimum of the number of automorphisms on 𝑋
stabilizers and automorphisms on 𝑍 stabilizers. Calling 𝜌′, 𝜌′′ the maximum and minimum of the
rates of the codes making the CSS code, we have using Proposition 3.6 that there is less than 𝑛!

(𝜌′𝑛)!such automorphisms.
Furthermore, this CSS code encodes 𝜌𝑛 where 𝜌 is the rate of the code. Using Proposition 1.3

we have that 𝜌 = 𝜌′ + 𝜌′′ − 1, thus 𝜌′ + 𝜌 = 2𝜌′ + 𝜌′′ > 2 by assumption.
Now using Lemma C.1, we get that ∃𝑛0 ∈ ℕ such that ∀ 𝑛 ≥ 𝑛0,

𝑛!
(𝜌′𝑛)! < (𝜌𝑛)!. Thus, starting

from 𝑛0, there is less possible automorphisms than permutation of the logical qubits. Meaning that
we cannot have addressable swaps implemented by physical swaps for those families of asymptoti-
cally good rate codes.

Remark 3.10. Since addressable CNOTs generate all the possible permutation of logical qubits.
Then this theorem also says that we cannot implement all addressable CNOTs using swaps only on
those codes.
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4 CONCLUSION

Corollary 3.11. Let (𝑛)𝑛∈ℕ a family of CSS codes and 𝑛0 ∈ ℕ such that ∀ 𝑛 > 𝑛0, 𝜌𝑛 >
1
3 .

Then this family of codes does not have addressable permutations of logical qubits implemented by
permutations of physical qubits only.

Proof. Calling 𝐶1
𝑛 , 𝐶

2
𝑛 the classical codes making 𝑛, and 𝜌′𝑛, 𝜌′′𝑛 the maximum and minimum of

their rates, we get that 𝜌𝑛 = 𝜌′𝑛 + 𝜌
′′
𝑛 − 1. Thus 𝜌𝑛 ≤ 2𝜌′𝑛 − 1 which means that 𝜌′𝑛 ≥ 𝜌𝑛+1

2 . Hence
𝜌𝑛 + 𝜌′𝑛 = 2𝜌′𝑛 + 𝜌

′′
𝑛 ≥ 𝜌𝑛+1

2 + 𝜌𝑛 > 1. Thus, for all 𝑛 > 𝑛0, 2𝜌′𝑛 + 𝜌′′𝑛 > 2, and we can now use
Theorem 3.9.
Remark 3.12. There is no limit to how small the rate of the CSS code is, we can construct codes
verifying this hypothesis with 𝜌 arbitrary close to 0.

This result is interesting as it illustrates an example of a trade-off between the performances of
codes and how easy it might be to implement some logical operations on them. In [PK22][LZ22]
they prove methods to construct families of good quantum codes for any rate 0 < 𝜌 < 1, however
using Theorem 3.9 we know that starting from 𝜌 > 1

3 implementing logical swaps is not possible
with just physical swaps.
Corollary 3.13. Let 𝑛 = 𝐶𝑆𝑆(𝐶1

𝑛 , 𝐶
2
𝑛 ) such that calling 𝜌′𝑛, 𝜌

′′
𝑛 the maximum and minimum of the

rates of the classical codes 𝐶1
𝑛 , 𝐶

2
𝑛 we have 2𝜌′𝑛 + 𝜌′′𝑛 > 2 starting from some 𝑛 > 𝑛1. Then this

family of codes does not have all addressable logical CNOTs between two blocks implemented by
transversal physical CNOTs on all qubits.

Proof. In the case of CNOTs between two blocks the equations of validity are
∀ 𝑎 ∈ 𝐴, 𝜋𝐼 (𝑎 ∩ 𝐼) ∈ 𝐴

∀ 𝑏 ∈ 𝐵, 𝜋𝐽 (𝑏 ∩ 𝐽 ) ∈ 𝐵

Now let us take 𝐼, 𝐽 = J𝑛K, meaning that all physical qubits participate in this implementation. We
will denote such an implementation as 𝐶𝑁𝑂𝑇𝜋 where 𝜋 is the permutation associating a control
qubit to its target. Using the equations, if 𝐶𝑁𝑂𝑇𝜋 is a valid logical then ∀ 𝑎 ∈ 𝐴, 𝜋(𝑎) ∈ 𝐴 and
∀ 𝑏 ∈ 𝐵, 𝜋−1(𝑏) ∈ 𝐵. This means that in this case, 𝜋 is an automorphism of 𝐴 and 𝜋−1 is an auto-
morphism of𝐵. Now as 𝜋(𝐵) = 𝜋(𝜋−1(𝐵) = 𝐵 we get that 𝜋 is an automorphism for the CSS code.

Now if we want all addressable logical CNOTs, it means that for any logical CNOT𝐼←→𝐽 that we
can represent by its permutation 𝜋𝐼 , we can implement it using the physical CNOTs described ear-
lier. However there are 𝑘! such logical CNOTs and less such physical CNOTs than automorphisms
of the code.

Now by assumption we can use Lemma C.1, which gives us that from some 𝑛0 ∈ ℕ, the number
of automorphisms is smaller than 𝑘!. Hence, we cannot implement all addressable CNOTs between
two blocks with transversal physical CNOTs on all qubits.

4 Conclusion
While quantum error correcting codes are getting more and more efficient [PK22][LZ22], it is still
unknown how we can apply gates efficiently on them. Work has been done to study transversal im-
plementation of gates, but in the case of codes encoded on more than one qubit, they do not consider
the question of applying logical gates to a subset of logical qubits. As quantum algorithms need
those gates, it is important to study how we can do them efficiently.

In this work we studied the addressability problem on CSS code and proved that naive imple-
mentation of logical gates often requires a splitting code. We showed that on non-splitting codes
any transversal implementation of addressable logical𝐻,𝐻𝑃 and 𝑃𝐻 gates must use non-Clifford
gates. Using upper bounds on the number of automorphisms, we proved that any CSS code with
asymptotical rate bigger than 1

3 cannot have all addressable logical swaps implemented by physical
swaps only, and cannot have all addressable logical CNOTs implemented by transversal physical
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4 CONCLUSION

CNOTs involving all physical qubits. This is up to our knowledge the first result illustrating a trade-
off between its performance and how easy it is to implement logical gates on it.

As mentioned before, up to our knowledge, this work is the first studying the addressability
problem. As quantum computation needs efficient and fault tolerant implementation, we mainly
restricted ourselves to Clifford gates and transversal implementations. In future work, it would be
interesting to consider non-Clifford transversal implementations, or Clifford implementation while
allowing bigger blocks, of bounded size, in the partition for transversality. Furthermore, as we could
not identify a split caused by phase gates, it would be interesting to find codes with good parameters
having addressable gates implemented by phases gates. Finally, in this study we only consider CSS
codes which is a very general family of codes. Future work might want to look at more specific
families of codes to identify more specific addressability results.

Acknowledgements : I would like to thank Samuel Jaques for his guidance and help during those
5 months, as well as the QKD team at IQC. It was an extremely enjoyable experience during which
I learned a lot about quantum computing and error correcting codes.
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A ADDITIONAL BACKGROUND

A Additional background
A.1 Quantum computing
In 1982 Richard Feynmann [Fey82] conjectured that a quantum computer, that would use quantum
mechanics at its base might be more efficient that a classical computer when it comes to simulat-
ing quantum systems. Since then problems were proved to be more efficiently computable using
quantum mechanics such as the search among a list of 𝑁 elements that can be done in (

√

𝑁)
using Grover algorithm [Gro96]. However, even if Shor’s algorithm [Sho97] for the problem of the
factorization is believed to be, we have yet to prove any exponential speedup using quantum. Such
a result would refute the strong Church-Turing thesis [Chu36][Tur37] stating that all universal im-
plementation of universal computation are equivalent up to polynomial time. Finally, proving that
Shor’s algorithm represents an exponential speedup would also imply 𝑃 ≠ 𝑁𝑃 .

While classical computing uses bits, that are either 0 or 1, quantum computing uses qubits, that
are quantum states in a superposition between 0 and 1 : |Ψ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ such that 𝛼2 + 𝛽2 = 1.
When measuring the state |Ψ⟩, it has a probability 𝛼2 to give 0 and 𝛽2 to give 1.

However the real benefit of using quantum mechanics comes from entanglement. For example
let us say we have a two-qubits state |Ψ⟩ = 1

√

2
(|00⟩ + |11⟩), then when measuring the first qubit,

we have equal probability for 0 and 1, but the second qubit will for sure give the same output : the
two qubits are entangled. When a state |Ψ⟩ is not entangled it is said to be separable and we can
describe the global quantum state as the tensor product |Ψ𝐴⟩⊗ |Ψ𝐵⟩.

As mentioned before, a quantum state has to be normalized in order to be a valid state. Thus
the operations we apply to them must preserve their norm. Hence, the quantum gates are modelled
by unitaries : the n-qubits quantum gates are in 2𝑛 (ℂ). The inverse of a unitary 𝑈 is its transpose-
conjugate noted 𝑈†. The following quantum gates are the most classic ones and are the base for
most quantum computation.

𝑋 =

⎛

⎜

⎜

⎜

⎝

0 1

1 0

⎞

⎟

⎟

⎟

⎠

𝑍 =

⎛

⎜

⎜

⎜

⎝

1 0

0 −1

⎞

⎟

⎟

⎟

⎠

𝑌 =

⎛

⎜

⎜

⎜

⎝

0 𝑖

−𝑖 0

⎞

⎟

⎟

⎟

⎠

𝐻 = 1
√

2

⎛

⎜

⎜

⎜

⎝

1 1

1 −1

⎞

⎟

⎟

⎟

⎠

𝑃 =

⎛

⎜

⎜

⎜

⎝

1 0

0 𝑖

⎞

⎟

⎟

⎟

⎠

𝐶𝑁𝑂𝑇 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The three first one together with the identity are the Pauli matrices and we can generate any
unitary as a linear combination of tensor products of them. 𝑋 corresponds to a bit flip, while𝑍 is a
phase flip, and 𝑌 = 𝑖𝑋𝑍 can be seen as the two of them. Thus, we can use those gates to represent
the quantum noise. There are two noise model that are commonly used : the Pauli error model and
the depolarizing noise model. The first consists of assuming that an𝑋 is applied after each operator
with probability 𝑝, same for 𝑍, thus 𝑌 appears with probability 𝑝2. The depolarizing noise model
assumes that after each gate we apply a 𝑋 or a 𝑍 or a 𝑌 , all with probability 𝑝.

A.2 Quantum error correcting codes
A.2.1 Examples of QECC

Let us take a 3-repetition code as an example. In this code the logical 0 corresponds to the state
|000⟩ and the logical 1 to |111⟩. Hence, the state |Ψ⟩ = 𝑎 |0⟩ + 𝑏 |1⟩ will be encoded as |Ψ⟩𝐸 =
𝑎 |000⟩ + 𝑏 |111⟩. Such an encoding can be done with the following circuit :

22



A ADDITIONAL BACKGROUND

|Ψ⟩

|Ψ⟩𝐸|0⟩

|0⟩

Now if we want to be able to decode, we can use a parity check circuit that give 0 if two qubits
are in |00⟩ or |11⟩ and −1 when it is in |10⟩ or |01⟩. The following circuit checks the parity of the
two first qubits.

|0⟩

|Ψ⟩𝐸

Using this circuits we can do a majority vote, and assuming a single bit flip, we can correct
the state. In this way, the encoding is a good way to protect an information that we are sending
assuming that not too many errors happen during the transmission.

|Ψ⟩
𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |Ψ⟩𝐸

𝑁𝑜𝑖𝑠𝑒
←←←←←←←←←←←←←←←←←←←←←←←→ |Ψ̃⟩𝐸

𝐷𝑒𝑐𝑜𝑑𝑖𝑛𝑔
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ |Ψ⟩

Another interesting property is that we can implement a logical 𝑋 gate by applying 𝑋 to all
physical qubits since XXX|000⟩ = |111⟩. Meaning that the𝑋 gate has a transversal implementation
on this code.

A.2.2 Basics of error correcting codes

Definition A.1. An error correcting code is an injective map : 𝐸𝑛𝑐 ∶ 𝔽 𝑘 ←←→ 𝔽 𝑛.

• 𝔽 𝑘 is the message space, and 𝑛 is the block length.

• 𝑘
𝑛 is the rate of the code and represents its efficiency.

• The code  is the image of the map and its elements are codewords.

•  is linear if the map is linear,

• 𝑑 the distance of the code is the minimum Hamming weight of a non-identity logical operator.
In the case of linear codes, it is the minimum Hamming weight of non trivial codewords.

We denote a classical code by [𝑛, 𝑘, 𝑑], and a quantum code by J𝑛, 𝑘, 𝑑K.

For example, Shor’s repetition code is a J9, 1, 3K code, whereas Kitaev toric code has parameter
J𝑛, 1,

√

𝑛K.

Theorem A.2. Let  be a code with distance 𝑑, and 𝑒 and error of Hamming weight 𝑠.
Then we can detect 𝑒 if 𝑠 < 𝑑, and correct 𝑒 if 𝑠 < 𝑡 = ⌊

𝑑−1
2 ⌋.

Proof. As the distance between any two codewords is at least 𝑑 < 𝑠we get that the error is detectable
as it does not send codewords to codewords. Now if the error has norm 𝑠 ≤ 𝑡 then we can correct
it by going back to the closest codeword.
Proposition A.3. Let  be a linear code, then there exists a matrix 𝐻 such that  = Ker(𝐻), we
say that 𝐻 is the parity check matrix of the code. This matrix 𝐻 is also a basis for ⟂ the dual
code of  defined as the words being orthogonal to every codewords.

Proof. Take 𝐻 a basis of ⟂ the orthogonal complement of , this is an (𝑛 − 𝑘) × 𝑛 matrix such
that  = Ker(𝐻).
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Remark A.4. In the case of the field being 𝔽2, a code can be included in its dual or even be its own
dual.

Let 𝑥 ∈ 𝔽 𝑛2 , we can write it as 𝑥 = 𝑐+ 𝑒 where 𝑐 is a codeword and 𝑒 and error. Using the parity
check matrix 𝐻 we have that 𝐻𝑥 = 𝐻𝑐 +𝐻𝑒 = 𝐻𝑒. We call the value 𝐻𝑒 the syndrome of 𝑥, the
goal of error correction, is given the syndrome, how can we deduct/correct the error.

B Adressability of P and CNOT gate on a single block
B.1 Phase gate
Proposition B.1. Let  be a CSS code such that 𝑆 = {𝑋𝑎, 𝑍𝑏

| 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with 𝐴,𝐵 ⊆ ℤ𝑛2. If
𝑃 ℎ is a valid logical and 𝐴 = 𝐵, then 𝑆 splits on some support ℎ and |𝑎 ∩ ℎ| = 0 mod 4 for 𝑎 ∈ 𝐴
iff 𝑃 ℎ is a valid logical.

Proof. Using the same analyses as for the 𝐻 gate, let 𝑎 ∈ 𝐴, then 𝑃𝑋𝑎𝑃† = 𝑋𝑎∖ℎ𝑌 𝑎∩ℎ =
𝑖|𝑎∩ℎ|𝑋𝑎𝑍𝑎∩ℎ. Thus for 𝑃 ℎ to be a valid logical we need 𝑎 ∩ ℎ ∈ 𝐵 and |𝑎 ∩ ℎ| = 0 mod 4.
This means that if 𝐴 = 𝐵 then 𝑃 ℎ being a valid logical implies that 𝐴 = 𝐵 splits on ℎ and thus that
𝑆 splits on ℎ.

Now if𝐴 = 𝐵, considering that 𝑆 splits on some support that we call ℎ, we get that 𝑆ℎ is a valid
logical iff for all 𝑎ℎ ∈ 𝐴ℎ which is the restriction of𝐴 to the support of ℎ, then |𝑎ℎ| = 0 mod 4.

The interesting result is that in the general case, we do not need any splitting for 𝑃 ℎ to be a valid
logical, hence we can have some addressable 𝑃 gates without having a splitting code !

Remark B.2. The fact that 𝐵 splits does not mean that 𝐴 splits. To see that let us take the code 𝑆

such that : 𝐴 = 𝑆𝑝𝑎𝑛

⎛

⎜

⎜

⎜

⎝

1 1 0 1 1 0

0 1 1 0 1 1

⎞

⎟

⎟

⎟

⎠

and 𝐵 = 𝑆𝑝𝑎𝑛

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 1 0 0

0 0 1 0 0 1

0 1 0 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We can see that this code is valid since the𝑋 and𝑍 stabilizers commute (ie𝐴 ⊆ 𝐵⟂ ). However,
𝐵 splits without 𝐴 splitting ! Let us take this code but make each vector repeat 2 times (meaning
that we double the number of qubits). Then for each vector in 𝑏 ∈ 𝐵, we can see that 𝑃 𝑏 is a
valid logical on this code. To see this, we can just observe that for all 𝑎, 𝑏 ∈ 𝐴,𝐵, 𝑎 ∩ 𝑏 ∈ 𝐵 and
|𝑎 ∩ 𝑏| = 0 mod 4.

A more general way to construct codes that have adressability on 𝑃 would be to take two clas-
sical codes having parity checks 𝐻𝐴,𝐻𝐵 such that all parity checks have weight 4. We make

𝐵 =

⎛

⎜

⎜

⎜

⎝

𝐻𝐴 0

0 𝐻𝐵

⎞

⎟

⎟

⎟

⎠

and 𝐴 =
(

𝐻𝐴 𝐻𝐵

)

. This is a valid 𝐶𝑆𝑆 code that has an addressable 𝑃 since

applying 𝑃 on each block is non trivial, and the code does not split. However the distance of such
codes might not be optimal ( even bad in most cases ).

However , the distance of such codes might not be optimal. For example, let us say that
𝐻𝐴,𝐻𝐵 have dimension 𝑘 × 𝑛𝐴, 𝑘 × 𝑛𝐵 . Take any 𝑥𝐴, 𝑥𝐵 vectors of length 𝑛𝐴,𝐵 . Let us call
𝑑 = min𝑥𝐴,𝑥𝐵∈(𝔽 𝑛𝐴2 ∖{0})×(𝔽 𝑛𝐵2 ∖{0}){|𝑥𝐴| + |𝑥𝐵| , 𝐻𝐴𝑥𝐴 = 𝐻𝐵𝑥𝐵}. To explain this definition, let us
consider 𝑥𝐴, 𝑥𝐵 such that 𝐻𝐴𝑥𝐴 = 𝐻𝐵𝑥𝐵 . We have that 𝐴(𝑥𝐴 𝑥𝐵) = 𝐻𝐴𝑥𝐴 +𝐻𝐵𝑥𝐵 . Hence, if
𝐻𝐴𝑥𝐴 = 𝐻𝐵𝑥𝐵 then (𝑥𝐴 𝑥𝐵) represent a valid logical operator. Now for this operator not to be in
𝐵 we need it not to split, meaning that we just need to ask 𝑥𝐴 ≠ 0, 𝑥𝐵 ≠ 0. Hence 𝑑 represent the
smallest weight of such operators and this means that 𝑑 ≤ 𝑑 with 𝑑 the distance of the code. For
example, if 𝐻𝐴,𝐻𝐵 share a columns then 𝑑 ≤ 2. This gives an insight as to why having 𝑋 of 𝑍
checks splitting and not the other might lead to codes with bad distances.
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Example B.3. Let us take

𝐻𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 1 0 0 0 1

1 0 1 0 1 1 0 0

0 1 1 0 1 1 0 0

0 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and 𝐻𝐵 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 1 0 1 0 1 0

0 1 0 0 1 0 1 1

1 0 1 1 0 0 1 0

0 0 1 0 1 1 0 1

0 0 0 0 1 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

We can see that the classical codes 𝐴,𝐵 with parity check 𝐻𝐴,𝐻𝐵 have distance 3. Indeed,
no two columns are similar and no column is made only of 0, so the distance is bigger than 2. Now

consider 𝑥𝐴 =
(

1 1 1 0 0 0 0 0

)

and 𝑥𝐵 =
(

0 1 0 0 0 1 0 1

)

We have

that 𝐻𝐴𝑥𝑇𝐴 = 0 and 𝐻𝐵𝑥𝑇𝐵 = 0, thus they represent non trivial codewords and have weight 3.
Hence 2 < 𝑑 ≤ 3 which gives 𝑑 = 3 for 𝐴 and 𝐵 .

Using the same analysis, we find that the code with parity check𝐴 =
(

𝐻𝐴 𝐻𝐵

)

has distance

3. And when we consider 𝐵 =

⎛

⎜

⎜

⎜

⎝

𝐻𝐴 0

0 𝐻𝐵

⎞

⎟

⎟

⎟

⎠

the distance of the associated code is also 3. Hence,

the distance of the CSS code CSS(A,B) is 3 and it has addressable 𝑃 gate.

However, we can check that in this example both logical operators implemented with 𝑃 on each
block are logical identities.

B.2 CNOT gate on the same block
After studying the𝐻 and 𝑃 gates, it is natural to look at the 𝐶𝑁𝑂𝑇 gate as those 3 gates generates
the group of Clifford gates.

Let us first consider the case where we apply the CNOT on one block : both qubits are from
the same block of code. We define 𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅 as the gate that does 𝐶𝑁𝑂𝑇 (𝑖, 𝑗) for all pair
(𝑖, 𝑗) ∈ 𝑅 ⊆ 𝐼 × 𝐽 . We call 𝐼 the controls and 𝐽 the targets. Since we want parallelized gates
we add the condition that 𝐼 ∩ 𝐽 = ∅ and that 𝑅 is a bijective relation from 𝐼 to 𝐽 , this conditions
will not be there in the case of CNOTs between two blocks.

We denote by 𝜋𝑅 the function such that
⎧

⎪

⎨

⎪

⎩

∀ 𝑖 ∈ 𝐼, 𝜋𝑅(𝑖) = 𝑗 such that (𝑖, 𝑗) ∈ 𝑅
∀ 𝑗 ∈ 𝐽 , 𝜋𝑅(𝑗) = 𝑖 such that (𝑖, 𝑗) ∈ 𝑅
∀𝑥 ∉ 𝐼 ∪ 𝐽 , 𝜋𝑅(𝑥) = 𝑥

(4)

We denote by 𝜋𝑅(𝑢) the string (𝑣𝑘)𝑘≤𝑛 where 𝑣𝑘 = 𝑢𝜋−1𝑅 (𝑘). Furthermore, it is easy to observe that
𝜋2𝑅 = 𝐼𝑑.
Proposition B.4. Let  be a CSS code such that 𝑆 = {𝑋𝑎, 𝑍𝑏

| 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with 𝐴,𝐵 ⊆ ℤ𝑛2.
If 𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅 is a valid logical then

{

∀ 𝑎 ∈ 𝐴, 𝜋𝑅(𝑎 ∩ 𝐼) ∈ 𝐴
∀ 𝑏 ∈ 𝐵, 𝜋𝑅(𝑏 ∩ 𝐽 ) ∈ 𝐵

(5)

Proof. Let 𝑋𝑎 be a stabilizer, then 𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅𝑋𝑎(𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅 )† = 𝑋𝑎⊕𝜋𝑅(𝑎∩𝐼). Thus as 𝑋𝑎 is a
valid stabilizer, and the stabilizer group is stable by product, we get that 𝑋𝑎⊕𝜋𝑅(𝑎∩𝐼) is a stabilizer
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iff ∀ 𝑎 ∈ 𝐴, 𝜋𝑅(𝑎∩𝐼) ∈ 𝐴. Doing the same analysis on𝐵 while inverting control that is the support
of the 𝑍 stabilizer gives the other equation.
Corollary B.5. Let  be a CSS code such that 𝑆 = {𝑋𝑎, 𝑍𝑏

| 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, with 𝐴,𝐵 ⊆ ℤ𝑛2. If
𝐴 = 𝐵, then 𝐶𝑁𝑂𝑇 (𝑖,𝑗)𝑅 being a valid logical implies that 𝑆 splits on 𝐼 and 𝐽 .

Proof. Using the equations from Proposition B.4, we get that if 𝐴 = 𝐵 and those CNOTs form a
valid logical, then taking 𝑎 ∈ 𝐴 we have 𝜋𝑅(𝑎 ∩ 𝐼) ∈ 𝐴 = 𝐵. Applying the equation for 𝐵 we get
𝜋𝑅((𝜋𝑅(𝑎 ∩ 𝐼) ∩ 𝐽 ) ∈ 𝐵. However 𝜋𝑅(𝑎 ∩ 𝐼) has support in 𝐽 thus 𝜋𝑅((𝜋𝑅(𝑎 ∩ 𝐼) ∩ 𝐽 ) = 𝑎 ∩ 𝐼 .
Hence, ∀ 𝑎 ∈ 𝐴, 𝑎 ∩ 𝐼 ∈ 𝐴 and for the same reasons we can start from 𝐵 to get the split on 𝐽 .

Remark B.6. In the case of general CSS code, having a valid logical CNOT does not imply any

splitting, for example take 𝐴 = 𝑆𝑝𝑎𝑛

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1 1 1 1 0

1 1 0 1 0 1 1 1

0 0 0 0 1 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

With 𝑅 = (𝑖, 𝑖 + 4)1≤𝑖≤4, we get that 𝜋𝑅(𝑎 ∩ 𝐼) ∈ 𝐴 for all 𝑎 ∈ 𝐴. And we can just construct 𝐵
by putting the 4 right qubits on the left, which satisfies the equation for 𝐵. Finally, those blocks do
not split.

B.3 Proof for transversal Clifford implementation of PH and HP
Theorem B.7. Any implementation of addressable logical 𝐻𝑃 using transversal Clifford requires
a splitting code. Furthermore, the logical 𝐻𝑃 is applied to all logical qubits of a subcode and
implemented using physical 𝐻𝑃 on all qubits of this subcode.

Any implementation of addressable logical 𝑃𝐻 using transversal Clifford requires a splitting
code. Furthermore, the logical 𝑃𝐻 is applied to all logical qubits of a subcode and implemented
using physical 𝑃𝐻 on all qubits of this subcode.

Proof. Let us start we the case of 𝐻𝑃 which correspond to the type 2 single qubit Clifford. This
means that considering again the minimal representatives, and 𝑈 a transversal implementation of
𝐻𝑃 :̄

𝑈𝑋 𝑎̃𝑖𝑈̄† ≡ 𝑋 𝑎̃𝑖𝑍 𝑏̃𝑖 . This gives using Remark 2.17 that 𝑎̃𝑖 ∩ {𝑈̄𝑃𝐻,𝐻} = 0, which means
𝑎̃𝑖 ⊆ {𝑈̄ 𝐼,𝑃 ,𝐻𝑃 ,𝑃𝐻𝑃 }. Furthermore, since 𝑈 implements a logical 𝐻𝑃 we get that 𝑈̄𝑍 𝑏̃𝑖𝑈̄† ≡ 𝑋 𝑎̃𝑖

which implies by Proposition 2.16 that 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 ,𝐻}.
Now using that 𝑈 is a valid logical, we get by Corollary 2.14 that the 𝐵 block splits on {𝑈̄𝐻𝑃 },

{𝑈̄𝑃𝐻} and {𝑈̄𝐻}. This implies that the 𝑋 logicals also split on those blocks. Meaning that any
minimal representative of an 𝑋 logical is either in {𝑈̄𝐻𝑃 } or {𝑈̄𝑃𝐻} or {𝑈̄𝐻} or {𝑈̄ 𝐼,𝑃 ,𝑃𝐻𝑃 }.
However since 𝑎̃𝑖 and 𝑏̃𝑖 must have a non empty intersection of their support, and that to implement
a logical𝐻𝑃 on logical qubit 𝑖we need 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 ,𝐻}, it gives that 𝑎̃𝑖 ⊆ {𝑈̄𝐻𝑃 } and 𝑏̃𝑖 ⊆ {𝑈̄𝐻𝑃 }
as 𝐴 splits on {𝑈̄𝐻𝑃 }. Hence, a logical 𝐻𝑃 implemented by transversal Clifford gates must be
implemented using physical 𝐻𝑃 on the subcode defined by the qubits in {𝑈̄𝐻𝑃 }.

Using the exact same reasoning we can prove a similar result for 𝑃𝐻 which would gives that
logical 𝑃𝐻 implemented by transversal Clifford gates must be implemented using physical 𝑃𝐻 on
the subcode defined by the qubits in {𝑈̄𝑃𝐻}.

C Automorphisms
Lemma C.1. For all 𝜌 + 𝜌′ > 1,

∃𝑛0 ∈ ℕ such that ∀ 𝑛 ≥ 𝑛0,
𝑛!

(𝜌′𝑛)!
< (𝜌𝑛)!
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Proof. Let us consider the logarithm of this inequality, it gives : ∑𝜌′𝑛≤𝑖≤𝑛 log(𝑖) <
∑

2≤𝑗≤𝜌𝑛 log(𝑗).Using that we are in the positive part of logarithm and that it’s increasing then we can say :
∑

𝜌′𝑛≤𝑖≤𝑛
log(𝑖) ≤ ∫

𝑛+1

𝜌′𝑛
log(𝑥)𝑑𝑥

∑

2≤𝑖≤𝜌𝑛
log(𝑖) ≥ ∫

𝜌𝑛−1

1
log(𝑥)𝑑𝑥

Now using ∫ 𝑛+1𝜌′𝑛 𝑙𝑜𝑔(𝑥)𝑑𝑥 = 𝑔(𝑛+1)−𝑔(𝜌′𝑛)where 𝑔(𝑥) = 𝑥 log(𝑥)−𝑥. And ∫ 𝜌𝑛−11 log(𝑥)𝑑𝑥 =
𝑔(𝜌𝑛 − 1) − 𝑔(1). Hence, if 𝑔(𝑛 + 1) − 𝑔(𝜌′𝑛) < 𝑔(𝜌𝑛 − 1) − 1 then the inequality holds.

𝑔(𝑛 + 1) − 𝑔(𝜌′𝑛) − 𝑔(𝜌𝑛 − 1) + 𝑔(1) = (1 − 𝜌′ − 𝜌)𝑛 log(𝑛) + (𝑛)

Since we assumed 𝜌′ + 𝜌 > 1, it gives that there exists an 𝑛0 for which ∀ 𝑛 ≥ 𝑛0, 𝑛!
(𝜌′𝑛)! < (𝜌𝑛)!

C.1 Addressability with fold transversality
Definition C.2. [BB22] 𝜏𝑛 ∈ 𝑆𝑛 is a ZX-duality for 𝐶𝑆𝑆(1,2) iff it is an automorphism of 𝐺
and 𝑈 such that 𝑈𝐺 = 𝐺𝑃 is such that

𝑈𝐺 = 𝐺𝑃 with 𝑈 =

⎛

⎜

⎜

⎜

⎝

0 𝑈2

𝑈1 0

⎞

⎟

⎟

⎟

⎠

.

Intuitively, when calling  = 𝐶𝑆𝑆(𝐴,𝐵) a ZX-duality is a permutation sending 𝐴 to 𝐵 and 𝐵
to 𝐴.
Remark C.3. The concept of 𝑍𝑋 duality is actually a restriction of what [Hao21] called Clifford
automorphisms that are defined for  a stabilizer code with 𝑆 the stabilizer group as

AutCliff() = {𝜏𝑛 ∈ 𝑆𝑛 | 𝜏𝑛(𝑆) = 𝜆𝜎𝑆𝜆
−1
𝜎 }

where 𝜆𝜎 is a tensor product of 𝑛 single qubit Clifford gates. It is quite easy to see that 𝑍𝑋 duality
are the permutation in AutCliff() such that 𝜆𝜎 = 𝐻⊗𝑛.

Proposition C.4. Let  = 𝐶𝑆𝑆(𝐴,𝐵), let us assume that  is a self-ZX-dual code, such that
𝑈 = 𝐻ℎ⨂

𝑖⟨𝜏(𝑖) SWAP𝑖,𝜏(𝑖) is a valid logical, then 𝑆 splits on ℎ.

Proof. As the code is self-ZX-dual it means that there exists a permutation on the qubits 𝜏𝑛 such that
𝜏𝑛(𝐴) = 𝐵 and 𝜏𝑛(𝐵) = 𝐴. And as 𝜏(𝑛) is a bijection, we get that 𝑑𝑖𝑚(𝐵) = 𝑑𝑖𝑚(𝜏𝑛(𝐴)) = 𝑑𝑖𝑚(𝐴).
The unitary 𝑈 being a valid logical means that ∀ 𝑎 ∈ 𝐴, 𝜏𝑛(𝑎) ∩ℎ ∈ 𝐵 and 𝜏𝑛(𝑎)∖ℎ ∈ 𝐴. However,
as 𝜏𝑛(𝐴) = 𝐵, we get that every element 𝑏 ∈ 𝐵 can be seen as 𝜏𝑛(𝑎) for some 𝑎 ∈ 𝐴, thus
∀ 𝑏 ∈ 𝐵, 𝑏 ∩ ℎ ∈ 𝐵. Now doing the same by starting on 𝐵 gives the same splitting on 𝐴, thus 𝑈
being a valid logical means that 𝑆 splits on ℎ.

D Algorithms
D.1 Deciding if a code splits
In his master thesis, John Burniston [Bur23] develops a method to identify if a matrix is "reducible"
where 𝐹 being reducible means that it either has a column of zeros or that there is an invertible map

𝑈 and a permutation 𝑃 such that 𝐹 =

⎛

⎜

⎜

⎜

⎝

𝐹1 0

0 𝐹2

⎞

⎟

⎟

⎟

⎠

. Hence, in our case, the definition of reducibility

is the same as the definition of split of the 𝑋 or 𝑍 checks. If 𝑋,𝑍 checks are reducible, and if they
share a common split, then taking the common blocks gives us that the stabilizer group splits and

27



D ALGORITHMS

that the code represents a splitting code.
The following algorithms follows his method to find if a matrix is reducible : that is the Find-

Blocks algorithm. Finally, we use another graph representation and connected components to find
the common blocks division between 𝑋 and 𝑍 stabilizers, thus giving the split of the code.

Given generators of its stabilizer group represented as a 𝑟 × 𝑛 matrix, this algorithm returns in
time (𝑟 × 𝑛) the split decomposition of a CSS code.
Algorithm 1 Common Block Diagonalization

Require: Stabilizer matrix 𝑆 =

⎡

⎢

⎢

⎢

⎣

𝑆𝑋 0

0 𝑆𝑍

⎤

⎥

⎥

⎥

⎦

Ensure: Partition of columns for common block diagonalization
1: 𝐵𝑋 ← Find_blocks(𝑆𝑋)
2: 𝐵𝑍 ← Find_blocks(𝑆𝑍 )
3: 𝑃 ← Common_blocks(𝐵𝑋 , 𝐵𝑍 )
4: return 𝑃

Algorithm 2 Find_blocks
Require: Matrix 𝐹
Ensure: Set of columns for each block in block diagonal form

1: 𝐹 ′ ← RowReducedForm(𝐹 ) { Ensures 𝐹 ′ =
[

𝐼𝑟 𝐹 ′′

]

}
2: 𝐺 ← TannerGraph(𝐹 ′)
3: 𝐶 ← ConnectedComponents(𝐺)
4: Blocks ← BlocksFromConnectedComponents(𝐶)
5: return Blocks

Algorithm 3 TannerGraph
Require: Matrix 𝐹
Ensure: Bipartite graph 𝐺 with edges between 𝑟𝑖 and 𝑐𝑗 if 𝐹𝑖𝑗 = 1

1: Initialize graph 𝐺 = (𝑅,𝐶,𝐸) where 𝑅 are row vertices, 𝐶 are column vertices, and 𝐸 are
edges

2: for each entry 𝐹𝑖𝑗 in 𝐹 do
3: if 𝐹𝑖𝑗 = 1 then
4: Add edge (𝑟𝑖, 𝑐𝑗) to 𝐸
5: end if
6: end for
7: return 𝐺

D.2 Unitaries implementable by permutations

This algorithm computes in 
(

𝑛!
𝑟!(𝑛−𝑟)!

)

, where 𝐵 is an 𝑟 × 𝑛 matrix, all the logical gates im-
plementable with physical swaps on the classical code with 𝐵 the parity check matrix.
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Algorithm 4 BlocksFromConnectedComponents
Require: Connected components 𝐶
Ensure: Column index for the block diagonalization of the matrix

1: Blocks ← ∅
2: for 𝐶𝑖 in 𝐶 do
3: block𝑖 ← ∅
4: for 𝑐𝑗 column vertex in 𝐶𝑖 do
5: block𝑖 ← block𝑖 ∪ {𝑗}
6: end for
7: Blocks ← Blocks ∪ {block𝑖}
8: end for
9: return Blocks

Algorithm 5 Common_blocks
Require: Block partitions 𝐵𝑋 and 𝐵𝑍
Ensure: Common block partition 𝑃

1: 𝐺 ← (𝑉 ,𝐸) where (Block𝑋𝑖 ,Block𝑍𝑗 ) ∈ 𝐸 if Block𝑋𝑖 ∩ Block𝑍𝑗 ≠ ∅
2: 𝐶 ← ConnectedComponents(𝐺)
3: Blocks2sum ← BlocksFromConnectedComponents(𝐶)
4: 𝑃 ← ∅
5: for Blocks in Blocks2sum do
6: Union ← ∅
7: for Block in Blocks do
8: Union ← Union ∪ Block
9: end for

10: 𝑃 ← 𝑃 ∪ {Union}
11: end for
12: return 𝑃

Algorithm 6 Logical operations implementable by physical swaps
Require: Basis 𝐵
Ensure: All matrices 𝑈 such that 𝑈𝐵 = 𝐵𝑃 for 𝑃 permutation

1: 𝑊 ,𝐵′ ← Gaussian_Elimination(𝐵) {Ensure 𝐵′ is in the form (𝐼𝑟 ∣∗)}
2: 𝑆 ← Find_Independent_Column_Sets(𝐵′) {Find all sets of 𝑟 independent columns in 𝐵′ up to

permutations}
3: Operations ← ∅
4: for all 𝑈 ∈ 𝑆 do
5: if 𝑈−1 has columns from 𝐵′ then
6: if 𝑈𝐵′ = 𝐵′𝑃 for some permutation 𝑃 then
7: Operations ← Operations ∪ {𝑊 −1𝑈𝑊 }
8: end if
9: end if

10: end for
11: return Operations
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Example D.1. Let us take the following parity check matrix :

𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 1 0 0 0 1 1

1 1 0 0 1 0 1 1 0

0 1 1 1 0 1 0 0 1

1 1 1 0 0 1 1 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The algorithm returns the following logical operators as the ones being implementable by per-
mutations.

𝑈1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑈2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑈3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 1 0

1 1 0 1

1 0 1 1

1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑈4 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0

1 1 0 1

1 0 1 1

1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦
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